
1 Probability and Bayes Theorem
1.1 Introduction
Probability theory is one of the three central mathematical tools in machine
learning, along with multivariable calculus and linear algebra. Tools from
probability allow us to manage the uncertainty inherent in data collected from
real world experiments, and to measure the reliability of predictions that we
might make from that data. In these notes, we will review some of the basic
terminology of probability and introduce Bayesian inference as a technique in
machine learning problems.

This will only be a superficial introduction to ideas from probability. For a
thorough treatment, see this open-source introduction to probability. For a more
applied emphasis, I recommend the excellent online course Probabilistic Systems
Analysis and Applied Probability and its associated text [1].

1.2 Probability Basics
The theory of probability begins with a set X of possible events or outcomes,
together with a “probability” function P on (certain) subsets of X that measures
“how likely” that combination of events is to occur.

The set X can be discrete or continuous. For example, when flipping a coin,
our set of possible events would be the discrete set {H,T} corresponding to the
possible events of flipping heads or tails. When measuring the temperature using
a thermometer, our set of possible outcomes might be the set of real numbers, or
perhaps an interval in R. The thermometer’s measurement is random because it
is affected by, say, electronic noise, and so its reading is the true temperature
perturbed by a random amount.

The values of P are between 0, meaning that the event will not happen, and
1, meaning that it is certain to occur. As part of our set up, we assume that
the total chance of some event from X occurring is 1, so that P (X) = 1; and
the chance of “nothing” happening is zero, so P (∅) = 0. And if U ⊂ X is some
collection, then P (U) is the chance of an event from U occurring.

The last ingredient of this picture of probability is additivity. Namely, we assume
that if U and V are subsets of X that are disjoint, then

P (U ∪ V ) = P (U) + P (V ).
Even more generally, we assume that this holds for (countably) infinite collections
of disjoint subsets U1, U2, . . ., where

P (U1 ∪ U2 ∪ · · · ) =
∞∑
i=1

P (Ui)

Definition: The combination of a set X of possible outcomes and a probability
function P on subsets of X that satisfies P (X) = 1, 0 ≤ P (U) ≤ 1 for all U , and
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is additive on countable disjoint collections of subsets of X is called a (naive)
probability space. X is called the sample space and the subsets of X are called
events.

Warning: The reason for the term “naive” in the above definition is that, if
X is an uncountable set such as the real numbers R, then the conditions in the
definition are self-contradictory. This is a deep and rather surprising fact. To
make a sensible definition of a probability space, one has to restrict the domain
of the probability function P to certain subsets of X. These ideas form the basis
of the mathematical subject known as measure theory. In these notes we will
work with explicit probability functions and simple subsets such as intervals that
avoid these technicalities.

1.2.1 Discrete probability examples

The simplest probability space arises in the analysis of coin-flipping. As men-
tioned earlier, the set X contains two elements {H,T}. The probability function
P is determined by its value P ({H}) = p, where 0 ≤ p ≤ 1, which is the chance
of the coin yielding a “head.” Since P (X) = 1, we have P ({T}) = 1− p.

Other examples of discrete probability spaces arise from dice-rolling and playing
cards. For example, suppose we roll two six-sided dice. There are 36 possible
outcomes from this experiment, each equally likely. If instead we consider the
sum of the two values on the dice, our outcomes range from 2 to 12 and the
probabilities of these outcomes are given by

2 3 4 5 6 7 8 9 10 11 12
1/36 1/18 1/12 1/9 5/36 1/6 5/36 1/9 1/12 1/18 1/36

A traditional deck of 52 playing cards contains 4 aces. Assuming that the chance
of drawing any card is the same (and is therefore equal to 1/52), the probability
of drawing an ace is 4/52 = 1/13 since

P ({A♣, A♠, A♥, A♦}) = 4P ({A♣}) = 4/52 = 1/13

1.2.2 Continuous probability examples

When the set X is continuous, such as in the temperature measurement, we
measure P (U), where U ⊂ X, by giving a “probability density function” f :
X → R and declaring that

P (U) =
∫
U

f(x)dX.

Notice that our function f(x) has to satisfy the condition

P (X) =
∫
X

f(x)dX = 1.
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For example, in our temperature measurement example, suppose the “true”
outside temperature is t0, and our thermometer gives a reading t. Then a good
model for the random error is to assume that the error x = t− t0 is governed by
the density function

fσ(x) = 1
σ
√

2π
e−x

2/2σ2

where σ is a parameter. In a continuous situation such as this one, the probability
of any particular outcome in X is zero since

P ({t}) =
∫ t

t

fσ(x)dx = 0

Still, the shape of the density function does tell you where the values are
concentrated – values where the density function is larger are more likely than
those where it is smaller.

With this density function, and x=t− t0, the error in our measurement is given
by

P (|t− t0| < δ) =
∫ δ

−δ

1
σ
√

2π
e−x

2/2σ2
dx (1)

The parameter σ (called the standard deviation) controls how tightly the ther-
mometer’s measurement is clustered around the true value t0; when σ is large,
the measurements are scattered widely, when small, they are clustered tightly.
See fig. 1.

1.3 Conditional Probability and Bayes Theorem
The theory of conditional probability gives a way to study how partial information
about an event informs us about the event as a whole. For example, suppose
you draw a card at random from a deck. As we’ve seen earlier, the chance that
card is an ace is 1/13. Now suppose that you learn that (somehow) that the
card is definitely not a jack, king, or queen. Since there are 12 cards in the deck
that are jacks, kings, or queens, the card you’ve drawn is one of the remaining
40 cards, which includes 4 aces. Thus the chance you are holding an ace is now
4/40 = 1/10.

In terms of notation, if A is the event “my card is an ace” and B is the event
“my card is not a jack, queen, or king” then we say that the probability of A
given B is 1/10. The notation for this is

P (A|B) = 1/10.

More generally, if A and B are events from a sample space X, and P (B) > 0,
then

P (A|B) = P (A ∩B)
P (B) ,

so that P (A|B) measures the chance that A occurs among those situations in
which B occurs.
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Figure 1: Normal Density
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1.3.1 Bayes Theorem

Bayes theorem is a foundational result in probability.

Theorem: Bayes Theorem says

P (A|B) = P (B|A)P (A)
P (B) .

If we use the definition of conditional probability given above, this is straightfor-
ward:

P (B|A)P (A)
P (B) = P (B ∩A)

P (B) = P (A|B).

1.3.2 An example

To illustrate conditional probability, let’s consider what happens when we ad-
minister the most reliable COVID-19 test, the PCR test, to an individual drawn
from the population at large. There are two possible test results (positive and
negative) and two possible true states of the person being tested (infected and
not infected). Suppose I go to the doctor and get a COVID test which comes
back positive. What is the probability that I actually have COVID?

Let’s let S and W stand for infected (sick) and not infected (well), and let +/−
stand for test positive or negative. Note that there are four possible outcomes of
our experiment:

• test positive and infected (S+) – this is a true positive.
• test positive and not infected (W+) – this is a false positive.
• test negative and infected (S-) – this is a false negative.
• test negative and not infected (W-) – this is a true negative.

The CDC says that the chance of a false positive – that is, the percentage of
samples from well people that incorrectly yields a positive result – is about
one-half of one percent, or 5 in 1000.

In other words,

P (+|W ) = P (W+)/P (W ) = 5/1000 = 1/200

On the other hand, the CDC tells us that chance of a false negative is 1 in 4, so

P (−|S) = P (S−)/P (S) = .25.

Since P (S−) + P (S+) = P (S). since every test is either positive or negative, we
have

P (+|S) = .75.

Suppose furthermore that the overall incidence of COVID-19 in the population
is p. In other words, P (S) = p so P (W ) = 1− p. Then

P (S+) = P (S)P (+|S) = .75p
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and
P (W+) = P (W )P (+|W ) = .005(1− p).

Putting these together we get P (+) = .005 + .745p

What I’m interested in is P (S|+) – the chance that I’m sick, given that my test
result was positive. By Bayes Theorem,

P (S|+) = P (+|S)P (S)
P (+) = .75p/(.005 + .745p) = 750p

5 + 745p .

As fig. 2 shows, if the population incidence is low then a positive test is far from
conclusive. Indeed, if the overall incidence of COVID is one percent, then a
positive test result only implies a 60 percent chance that I am in fact infected.

Just to fill out the picture, we have

P (−) = P (S−) + P (W−) = (P (S)− P (S+)) + (P (W )− P (W+))

which yields

P (−) = 1− .005 + .005p− .75p = .995− .745p.

Using Bayes Theorem, we obtain

P (S|−) = P (−|S)P (S)
P (−) = .25p/(.995− .745p) = 250p

995− 745p .

In this case, even though the false negative rate is pretty high (25 percent)
overall, if the population incidence is one percent, then the probability that
you’re sick given a negative result is only about .25 percent. So negative results
are very likely correct!

1.4 Independence
Independence is one of the fundamental concepts in probability theory. Con-
ceptually, two events are independent if the occurrence of one has does not
influence the likelihood of the occurrence of the other. For example, successive
flips of a coin are independent events, since the result of the second flip doesn’t
have anything to do with the result of the first. On the other hand, whether or
not it rains today and tomorrow are not independent events, since the weather
tomorrow depends (in a complicated way) on the weather today.

We can formalize this idea of independence using the following definition.

Definition: Let X be a sample space and let A and B be two events. Then A
and B are independent if P (A ∩ B) = P (A)P (B). Equivalently, A and B are
independent if P (A|B) = P (A) and P (B|A) = P (B).
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Figure 2: P(S|+) vs P(S)
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1.4.1 Examples

1.4.1.1 Coin Flipping Suppose our coin has a probability of heads given
by a real number p between 0 and 1, and we flip our coin N times. What is the
chance of gettting k heads, where 0 ≤ k ≤ N? Any particular sequence of heads
and tails containing k heads and N − k tails has probability

P (particular sequence of k heads among N flips) = pk(1− p)N−k.

In addition, there are
(
N
k

)
sequences of heads and tails containing k heads. Thus

the probability P (k,N) of k heads among N flips is

P (k,N) =
(
N

k

)
pk(1− p)N−k. (2)

Notice that the binomial theorem gives us
∑N
k=0 P (k,N) = 1 which is a reassuring

check on our work.

The probability distribution on the set X = {0, 1, . . . , N} given by P (k,N) is
called the binomial distribution with parameters N and p.

1.4.1.2 A simple ‘mixture’ Now let’s look at an example of events that
are not independent. Suppose that we have two coins, with probabilities of heads
p1 and p2 respectively; and assume these probabilities are different. We play the
a game in which we first choose one of the two coins (with equal chance) and
then flip it twice. Is the result of the second flip independent of the first? In
other words, is P (HH) = P (H)2?

This type of situation is called a ‘mixture distribution’ because the probability
of a head is a “mixture” of the probability coming from the two different coins.

The chance that the first flip is a head is (p1 + p2)/2 because it’s the chance of
picking the first coin, and then getting a head, plus the chance of picking the
second, and then getting a head. The chance of getting two heads in a row is
(p2

1 + p2
2)/2 because it’s the chance, having picked the first coin, of getting two

heads, plus the chance, having picked the second, of getting two heads.

Since
p2

1 + p2
2

2 6=
(
p1 + p2

2

)2

we see these events are not independent.

In terms of conditional probabilities, the chance that the second flip is a head,
given that the first flip is, is computed as:

P (HH|H) = p2
1 + p2

2
p1 + p2

.
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From the Cauchy-Schwartz inequality one can show that

p2
1 + p2

2
p1 + p2

>
p1 + p2

2 .

Why should this be? Why should the chance of getting a head on the second
flip go up given that the first flip was a head? One way to think of this is that
the first coin flip contains a little bit of information about which coin we chose.
If, for example p1 > p2, and our first flip is heads, then it’s just a bit more likely
that we chose the first coin. As a result, the chance of getting another head is
just a bit more likely than if we didn’t have that information. We can make
this precise by considering the conditional probability P (p = p1|H) that we’ve
chosen the first coin given that we flipped a head. From Bayes’ theorem:

P (p = p1|H) = P (H|p = p1)P (p = p1)
P (H) = p1

p1 + p2
= 1

1 + (p2/p1) >
1
2

since (1 + (p2/p1)) < 2.

Exercise: Push this argument a bit further. Let p1 = max(p1, p2) Let PN be
the conditional probability of getting heads assuming that the first N flips were
heads. Show that PN → p1 as N →∞. All those heads piling up make it more
and more likely that you’re flipping the first coin and so the chance of getting
heads approaches p1.

1.4.1.3 An example with a continuous distribution Suppose that we
return to our example of a thermometer which measures the ambient temperature
with an error that is distributed according to the normal distribution, as in
eq. 1. Suppose that we make 10 independent measurements t1, . . . , t10 of the true
temperature t0. What can we say about the distribution of these measurements?

In this case, independence means that

P = P (|t1−t0| < δ, |t2−t0| < δ, . . .) = P (|t1−t0| < δ)P (|t2−t0| < δ) · · ·P (|t10−t0| < δ)

and therefore

P =
(

1
σ
√

2π

)10 ∫ δ

−δ
· · ·
∫ δ

−δ
e−(
∑10

i=1
x2
i )/2σ2

dx1 · · · dx10

One way to look at this is that the vector e of errors (|t1 − t0|, . . . , |t10 − t0|) is
distributed according to a multivariate gaussian distribution:

P (e ∈ U) =
(

1
σ
√

2π

)10 ∫
U

e−‖x‖
2/2σ2

dx (3)

where U is a region in R10.
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The multivariate gaussian can also describe situations where independence does
not hold. For simplicity, let’s work in two dimensions and consider the probability
density on R2 given by

P (e ∈ U) = A

∫
U

e−(x2
1−x1x2+x2

2)/2σ2
dx.

where the constant A is chosen so that

A

∫
R2
e−(x2

1−x1x2+x2
2)/2σ2

dx = 1.

This density function as a “bump” concentrated near the origin in R2, and its
level curves are a family of ellipses centered at the origin. See fig. 3 for a plot of
this function with σ = 1.

Figure 3: Multivariate Gaussian

In this situation we can look at the conditional probability of the first variable
given the second, and see that the two variables are not independent. Indeed, if
we fix x2, then the distribution of x1 depends on our choice of x2. We could see
this by a calculation, or we can just look at the graph: if x2 = 0, then the most
likely values of x1 cluster near zero, while if x2 = 1, then the most likely values
of x1 cluster somewhere above zero.
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1.5 Random Variables, Mean, and Variance
Typically, when we are studying a random process, we aren’t necessarily accessing
the underlying events, but rather we are making measurements that provide
us with some information about the underlying events. For example, suppose
our sample space X is the set of throws of a pair of dice, so X contains the 36
possible combinations that can arise from the throws. What we are actually
interested is the sum of the values of the two dice – that’s our “measurement” of
this system. This rather vague notion of a measurement of a random system is
captured by the very general idea of a random variable.

Definition: Let X be a sample space with probability function P . A random
variable on X is a function f : X → R.

Given a random variable f , we can use the probability measure to decide how
likely f is to take a particular value, or values in a particular set by the formula

P (f(x) ∈ U) = P (f−1(U))

In the dice rolling example, the random variable S that assigns their sum to
the pair of values obtained on two dice is a random variable. Those values lie
between 2 and 12 and we have

P (S = k) = P (S−1({k})) = P ({(x, y) : x+ y = k})

where (x, y) runs through {1, 2, . . . , 6}2 representing the two values and
P ((x, y)) = 1/36 since all throws are equally likely.

Let’s look at a few more examples, starting with what is probably the most
fundamental of all.

Definition: Let X be a sample space with two elements, say H and T , and
suppose that P (H) = p for some 0 ≤ p ≤ 1. Then the random variable that
satisfies f(H) = 1 and f(T ) = 0 is called a Bernoulli random variable with
parameter p.

In other words, a Bernoulli random variable gives the value 1 when a coin flip is
heads, and 0 for tails.

Now let’s look at what we earlier called the binomial distribution.

Definition: Let X be a sample space consisting of strings of H and T of length
N , with the probability of a particular string S with k heads and N − k tails
given by

P (S) = pk(1− p)N−k

for some 0 ≤ p ≤ 1. In other words, X is the sample space consisting of N
independent flips of a coin with probability of heads given by p.
Let f : X → R be the function which counts the number of H in the string.
Then f is a random variable called a binomial random variable with parameters
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p and N . Clearly, a binomial random variable with N = 1 is just a Bernoulli
variable with parameter p.

If f is a binomial random variable with parameters p and N , then

P (f = k) =
(
N

k

)
pk(1− p)N−k

since f−1({k}) is the number of elements in the subset of strings of H and T of
length N containing exactly k H’s.

For an example with a continuous random variable, suppose our sample space is
R2 and the probability density is the simple multivariate normal

P (x ∈ U) =
(

1√
2π

)2 ∫
U

e−‖x‖
2/2dx.

Let f be the random variable f(x) = ‖x‖. The function f measures the Euclidean
distance of a randomly drawn point from the origin. The set

U = f−1([0, r)) ⊆ R2

is the circle of radius r in R2. The probability that a randomly drawn point lies
in this circle is

P (f < r) =
(

1√
2π

)2 ∫
U

e−‖x‖
2/2dx.

We can actually evaluate this integral in closed form by using polar coordinates.
We obtain

P (f < r) =
(

1√
2π

)2 ∫ 2π

θ=0

∫ r

ρ=0
e−ρ

2/2ρdρdθ.

Since
d

dρ
e−ρ

2/2 = −ρe−ρ
2/2

we have

P (f < r) = − 1
2π θe

−ρ2/2|2πθ=0|rρ=0

= 1− e−r
2/2

The probability density associated with this random variable is the derivative of
1− e−r2/2

P (f ∈ [a, b]) =
∫ b

r=a
re−r

2/2dr

as you can see by the fundamental theorem of calculus. This density is drawn in
fig. 4 where you can see that the points are clustered at a distance of 1 from the
origin.
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Figure 4: Density of the Norm
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1.5.1 Independence and Random Variables

We can extend the notion of independence from events to random variables.

Definition: Let f and g be two random variables on a sample space X with
probability P . Then f and g are independent if, for all intervals U and V in R,
the events f−1(U) and g−1(V ) are independent.

For discrete probability distributions, this means that, for all a, b ∈ R,

P (f = a and g = b) = P (f = a)P (g = b).

For continous probability distributions given by a density function P (x), inde-
pendence can be more complicated to figure out.

1.5.2 Expectation, Mean and Variance

The most fundamental tool in the study of random variables is the concept
of “expectation,” which is a fancy version of average. The word “mean” is a
synonym for expectation – the mean of a random variable is the same as its
expectation or “expected value.”

Definition: Let X be a sample space with probability measure P . Let f : X →
R be a random variable. Then the expectation or expected value E[f ] of f is

E[f ] =
∫
X

f(x)dP.

More specifically, if X is discrete, then

E[f ] =
∑
x∈X

f(x)P (x)

while if X is continuous with probability density function p(x)dx then

E[f ] =
∫
X

f(x)p(x)dx.

If f is a Bernoulli random variable with parameter p, then

E[f ] = 1 · p+ 0 · (1− p) = p

If f is a binomial random variable with parameters p and N , then

E[f ] =
N∑
i=0

i

(
N

i

)
pi(1− p)N−i

One can evaluate this using some combinatorial tricks, but it’s easier to apply
this basic fact about expectations.
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Proposition: Expectation is linear: E[aX + bY ] = aE[X] + bE[Y ] for random
variables X,Y and constants a and b.

The proof is an easy consequence of the expression of E as a sum (or integral).

Since a binomial random variable Z with parameters N and p is the sum of N
Bernoulli random variables, its expectation is

E[X1 + · · ·+XN ] = Np.

A more sophisticated property of expectation is that it is multiplicative when
the random variables are independent.

Proposition: Let f and g be two independent random variables. Then E[fg] =
E[f ]E[g].

Proof: Let’s suppose that the sample space X is discrete. By definition,

E[f ] =
∑
x∈X

f(x)P (x)

and we can rewrite this as

E[f ] =
∑
a∈R

aP ({x : f(x) = a}).

Let Z ⊂ R be the range of f . Then

E[fg] =
∑
a∈Z

aP ({x : fg(x) = a})

=
∑
a∈Z

∑
(u,v)∈ Z2

uv=a

aP ({x : f(x) = u and g(x) = v})

=
∑
a∈Z

∑
Z2
uv=a

uvP ({x : f(x) = u})P ({x : g(x) = v})

=
∑
u∈Z

uP ({x : f(x) = u})
∑
v∈Z

vP ({x : f(x) = v})

= E[f ]E[g]

1.5.2.1 Variance The variance of a random variable is a measure of its
dispersion around its mean.

Definition: Let f be a random variable. Then the variance is the expression

σ2(f) = E[(f − E[f ])2] = E[f2]− (E[f ])2

The square root of the variance is called the “standard deviation.”

The two formulae for the variance arise from the calculation

E[(f−E[f ])2] = E[(f2−2fE[f ]+E[f ]2)] = E[f2]−2E[f ]2+E[f ]2 = E[f2]−E[f ]2.
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To compute the variance of the Bernoulli random variable f with parameter p,
we first compute

E[f2] = p(1)2 + (1− p)02 = p.

Since E[f ] = p, we have
σ2(f) = p− p2 = p(1− p).

If f is the binomial random variable with parameters N and p, we can again use
the fact that f is the sum of N Bernoulli random variables X1 + · · ·+Xn and
compute

E[(
∑
i

Xi)2]− E[
∑
i

Xi]2 = E[
∑
i

X2
i +

∑
i,j

XiXj ]−N2p2

= Np+N(N − 1)p2 −N2p2

= Np(1− p)

where we have used the fact that the square X2 of a Bernoulli random variable
is equal to X.

For a continuous example, suppose that we consider a sample space R with the
normal probability density

P (x) = 1
σ
√

2π
e−x

2/2σ2
dx.

The mean of the random variable x is

E[x] = 1
σ
√

2π

∫ ∞
−∞

xe−x
2/2σ2

dx = 0

since the function being integrated is odd. The variance is

E[x2] = 1
σ
√

2π

∫ ∞
−∞

x2e−x
2/2σ2

dx.

The trick to evaluating this integral is to consider the derivative:

d

dσ

[
1

σ
√

2π

∫ ∞
−∞

e−x
2/(2σ2)dx

]
= 0

where the result is zero since the quantity being differentiated is a constant
(namely 1). Sorting through the resulting equation leads to the fact that

E[x2] = σ2

so that the σ2 parameter in the normal distribution really is the variance of the
associated random variable.
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1.6 Models and Likelihood
A statistical model is a mathematical model that accounts for data via a process
that incorporates random behavior in a structured way. We have seen several
examples of such models in our discussion so far. For example, the Bernoulli
process that describes the outcome of a series of coin flips as independent choices
of heads or tails with probability p is a simple statistical model; our more
complicated mixture model in which we choose one of two coins at random and
then flip that is a more complicated model.
Our description of the variation in temperature measurements as arising from
perturbations from the true temperature by a normally distributed amount is
another example of a statistical model, this one involving a continuous random
variable.

When we apply a mathematical model to understand data, we often have a
variety of parameters in the model that we must adjust to get the model to best
“fit” the observed data. For example, suppose that we observe the vibrations
of a block attached to a spring. We know that the motion is governed by a
second order linear differential equation, but the dynamics depend on the mass
of the block, the spring constant, and the damping coefficient. By measuring
the dynamics of the block over time, we can try to work backwards to figure out
these parameters, after which we will be able to predict the block’s motion into
the future.

1.6.1 Maximum Likelihood (Discrete Case)

To see this process in a statistical setting, let’s return to the simple example of a
coin flip. The only parameter in our model is the probability p of getting heads
on a particular flip. Suppose that we flip the coin 100 times and get 55 heads
and 45 tails. What can we say about p?

We will approach this question via the “likelihood” function for our data. We
ask: for a particular value of the parameter p, how likely is this outcome? From
eq. 2 we have

P (55H, 45T ) =
(

100
55

)
p55(1− p)45.

This function is plotted in fig. 5. As you can see from that plot, it is extremely
unlikely that we would have gotten 55 heads if p was smaller than .4 or greater
than .7, while the most likely value of p occurs at the maximum value of this
function, and a little calculus tells us that this point is where p = .55. This most
likely value of p is called the maximum likelihood estimate for the parameter p.

1.6.2 Maximum Likelihood (Continuous Case)

Now let’s look at our temperature measurements where the error is normally
distributed with variance parameter σ2. As we have seen earlier, the probability
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Figure 5: Likelihood Plot
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density of errors x = (x1, . . . , xn) of n independent measurements is

P (x) =
(

1
σ
√

2π

)n
e−‖x‖

2/(2σ2)dx.

(see eq. 3). What should we use as the parameter σ? We can ask which choice
of σ makes our data most likely. To calculate this, we think of the probability
of a function of σ and use Calculus to find the maximum. It’s easier to do this
with the logarithm.

logP (x) = −‖x‖
2

2σ2 − n log σ + C

where C is a constant that we’ll ignore. Taking the derivative and setting it to
zero, we obtain

−‖x‖2σ−3 − nσ−1 = 0
which gives the formula

σ2 = ‖x‖
2

n

This should look familiar! The maximum likelihood estimate of the variance is
the mean-squared-error.

1.6.3 Linear Regression and likelihood

In our earlier lectures we discussed linear regression at length. Our introduction
of ideas from probability give us new insight into this fundamental tool. Consider
a statistical model in which certain measured values y depend linearly on x up
to a normally distributed error:

y = mx+ b+ ε

where ε is drawn from the normal distribution with variance σ2.

The classic regression setting has us measuring a collection of N points (xi, yi)
and then asking for the “best” m, b, and σ2 to explain these measurements.
Using the likelihood perspective, each value yi−mxi− b is an independent draw
from the normal distribution with variance σ2, exactly like our temperature
measurements in the one variable case.

The likelihood (density) of those draws is therefore

P =
(

1
σ
√

2π

)N
e−
∑

i
(yi−mxi−b)2/(2σ2).

What is the maximum likelihood estimate of the parameters m, b, and σ2?

To find this we look at the logarithm of P and take derivatives.

log(P ) = −N log(σ)− 1
2σ2

∑
i

(yi −mxi − b)2.
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As far as m and b are concerned, the minimum comes from the derivatives with
respect to m and b of ∑

i

(yi −mxi − b)2.

In other words, the maximum likelihood estimate m∗ and b∗ for m and b are
exactly the ordinary least squares estimates.

As far as σ2 is concerned, we find just as above that the maximum likelihood
estimate σ2

∗ is the mean squared error

σ2
∗ = 1

N

∑
i

(yi −m∗xi − b∗)2.

1.7 Bayesian Inference
We conclude our review of ideas from probability by examining the Bayesian
perspective on data.

Suppose that we wish to conduct an experiment to determine the temperature
outside our house. We begin our experiment with a statistical model that
is supposed to explain the variability in the results. The model depends on
some parameters that we wish to estimate. For example, the parameters of our
experiment might be the ‘true’ temperature t∗ and the variance σ2 of the error.

From the Bayesian point of view, at the beginning of this experiment we have an
initial sense of what the temperature is likely to be, expressed in the form of a
probability distribution. This initial information is called the prior distribution.

For example, if we know that it’s December in Connecticut, our prior distribution
might say that the temperature is more likely to be between 20 and 40 degrees
Fahrenheit and is quite unlikely to be higher than 60 or lower than 0. So our
prior distribution might look like fig. 6.

If we really have no opinion about the temperature other than its between say,
−20 and 100 degrees, our prior distribution might be uniform over that range,
as in fig. 7.

The choice of a prior will guide the interpretation of our experiments in ways
that we will see shortly.

The next step in our experiment is the collection of data. Suppose we let t =
(t1, t2, . . . , tn) be a random variable representing n independent measurements
of the temperature. We consider the joint distribution of the parameters t∗ and
σ2 and the possible measurements t:

P (t, t∗, σ2) =
(

1
σ
√

2π

)n
e−‖t−t∗e‖2/(2σ2)

where e = (1, 1, . . . , 1).
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Figure 6: Prior Distribution on Temperature
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Figure 7: Uniform Prior
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The conditional probability P (t∗, σ2|t) is the distribution of the values of t∗ and
σ2 given a value of the t. This is what we hope to learn by our experiment –
namely, if we make a particular measurement, what does it tell us about t∗ and
σ2?

Now suppose that we actually make some measurements, and so we obtain a
specific set of values t0 for t.

By Bayes Theorem,

P (t∗, σ2|t = t0) = P (t = t0|t∗, σ2)P (t∗, σ2)
P (t = t0)

We interpret this as follows:

• the left hand side P (t∗, σ2|t = t0) is called the posterior distribution and
is the distribution of t∗ and σ2 obtained by updating our prior knowledge
with the results of our experiment.

• The probability P (t = t0|t∗, σ2) is the probability of obtaining the mea-
surements we found for a particular value of the parameters t∗ and σ2.

• The probability P (t∗, σ2) is the prior distribution on the parameters that
reflects our initial impression of the distribution of these parameters.

• The denominator P (t = t0) is the total probability of the results that
we obtained, and is the integral over the distribution of the parameters
weighted by their prior probability:

P (t = t0) =
∫
t∗,σ2

P (t = t0|t∗, σ2)P (t∗, σ2)

1.7.1 Bayesian experiments with the normal distribution

To illustrate these Bayesian ideas, we’ll consider the problem of measuring the
temperature, but for simplicity let’s assume that we fix the variance in our
error measurements at 1 degree. Let’s use the prior distribution on the true
temperature that I proposed in fig. 6, which is a normal distribution with variance
15 “shifted” to be centered at 30:

P (t∗) =
(

1√
2π

)
e−(t∗−30)2/30.

The expected value E[t] – the mean of the this distribution – is 30.

Since the error in our measurements is normally distributed with variance 1, we
have

P (t− t∗) =
(

1√
2π

)
e−(t−t∗)2/2

or as a function of the absolute temperature, we have

P (t, t∗) =
(

1√
2π

)
e−(t−t∗)2/2.
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Now we make a bunch of measurements to obtain t0 = (t1, . . . , tn). We have

P (t = t0|t∗) =
(

1√
2π

)n
e−(t−t∗e)2/2.

The total probability T = P (t = t0) is hard to calculate, so let’s table that for a
while. The posterior probability is

P (t∗|t = t0) = 1
T

(
1√
2π

)n
e−‖t−t∗e‖2/2

(
1√
2π

)
e−(t∗−30)2/30.

Leaving aside the multiplicative constants for the moment, consider the expo-
nential

e−(‖t−t∗e‖2/2+(t∗−30)2)/30.

Since t is a vector of constants – it is a vector of our particular measurements –
the exponent

‖t− t∗e‖2 + (t∗ − 30)2 = (t∗ − 30)2/30 +
∑
i

(ti − t∗)2/2

is a quadratic polynomial in t∗ that simplifies:

(t∗ − 30)2/30 +
∑
i

(ti − t∗)2/2 = At2∗ +Bt∗ + C.

Here
A = ( 1

30 + n

2 ),

B = −2−
∑
i

ti

C = 30 + 1
2
∑
i

t2i .

We can complete the square to write

At2∗ +Bt∗ + C = (t∗ − U)2/2V +K

where
U = 2 +

∑
i ti

1
15 + n

and
V = 1

1
15 + n

.

So up to constants that don’t involve t∗, the posterior density is of the form

e(t∗−U)2/2V
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and since it is a probability density, the constants must work out to give total
integral of 1. Therefore the posterior density is a normal distribution centered at
U and with variance V . Here U is called the posterior mean and V the posterior
variance.

To make this explicit, suppose n = 5 and we measured the following temperatures:

40, 41, 39, 37, 44

The mean of these observations is 40.2 and the variance is 5.4.

A calculation shows that the posterior mean is 40.1 and the posterior variance is
0.2. Comparing the prior with the posterior, we obtain the plot in fig. 8. The
posterior has a sharp peak at 40.1 degrees. This value is just a bit smaller than
the mean of the observed temperatures which is 40.2 degrees. This difference is
caused by the prior – our prior distribution said the temperature was likely to
be around 30 degrees, and so the prior pulls the observed mean a bit towards
the prior mean taking into account past experience. Because the variance of the
prior is large, it has a relatively small influence on the posterior.

The general version of the calculation above is summarized in this proposition.

Proposition: Suppose that our statistical model for an experiment proposes
that the measurements are normally distributed around an (unknown) mean
value of µ with a (fixed) variance σ2. Suppose further that our prior distribution
on the unknown mean µ is normal with mean µ0 and variance τ2. Suppose we
make measurements

y1, . . . , yn

with mean y. Then the posterior distribution of µ is again normal, with posterior
variance

τ ′2 = 1
1
τ2 + n

σ2

and posterior mean

µ′ =
µ0
τ2 + n

σ2 y
1

1
τ2 + n

σ2

So the posterior mean is a sort of weighted average of the sample mean and the
prior mean; and as n→∞, the posterior mean approaches the sample mean –
in other words, as you get more data, the prior has less and less influence on the
results of the experiment.

1.7.2 Bayesian coin flipping

For our final example in this fast overview of ideas from probability, we consider
the problem of deciding whether a coin is fair. Our experiment consists of N
flips of a coin with unknown probability p of heads, so the data consists of the
number h of heads out of the N flips. To apply Bayesian reasoning, we need a
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Figure 8: Prior and Posterior
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prior distribution on p. Let’s first assume that we have no reason to prefer one
value of p over another, and so we choose for our prior the uniform distribution
on p between 0 and 1.

We wish to analyze P (p|h), the probability distribution of p given h heads out
of N flips. Bayes Theorem gives us:

P (p|h) = P (h|p)P (p)
P (h)

where
P (h|p) =

(
N

h

)
ph(1− p)N−h

and
P (h) =

∫ 1

p=0
P (h|p)P (p)dp =

(
N

h

)∫ 1

p=0
ph(1− p)N−hdp

is a constant which insures that∫
p

P (p|h)dp = 1.

We see that the posterior distribution P (p|h) is proportional to the polynomial
function

P (p|h) ∝ ph(1− p)N−h.
As in section 1.6.1, we see that this function peaks at h/N . This is called the
maximum a posteriori estimate for p.

Another way to summarize the posterior distribution P (p|h) is to look at the
expected value of p. This is called the posterior mean of p. To compute it, we
need to know the normalization constant in the expression for P (p|h), and for
that we can take advantage of the properties of a special function B(a, b) called
the Beta-function:

B(a, b) =
∫ 1

p=0
pa−1(1− p)b−1dp.

Proposition: If a and b are integers, then B(a, b) = a+b
ab

1
(a+b
a ) .

Proof: Using integration by parts, one can show that

B(a, b) = a− 1
b

B(a− 1, b+ 1)

and a simple calculation shows that

B(1, b) = 1
b
.

Let
H(a, b) = a+ b

ab

1(
a+b
a

) = (a− 1)!(b− 1)!
(a+ b− 1)!
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Then it’s easy to check that H satsifies the same recurrences as B(a, b), and that
H(1, b) = 1/b. So the two functions agree by induction.

Using this Proposition, we see that

P (p|h) = ph(1− p)N−h
B(h+ 1, N − h+ 1)

and

E[p] =
∫ 1
p=0 p

h+1(1− p)N−hdp
B(h+ 1, N − h+ 1) = B(h+ 2, N − h+ 1)

B(h+ 1, N − h+ 1) .

Sorting through this using the formula for B(a, b) we obtain

E[p] = h+ 1
N + 2 .

So if we obtained 55 heads out of 100 flips, the maximum a posteriori estimate
for p is .55, while the posterior mean is 56/102 = .549 – just a bit less.

Now suppose that we had some reason to believe that our coin was fair. Then
we can choose a prior probability distribution that expresses this. For example,
we can choose

P (p) = 1
B(5, 5)p

4(1− p)4.

Here we use the Beta function to guarantee that
∫ 1

0 P (p)dp = 1. We show this
prior distribution in fig. 9.

If we redo our Bayes theorem calculation, we find that our posterior distribution
is

P (p|h) ∝ ph+4(1− p)N−h+4

and relying again on the Beta function for normalization we have

P (p|h) = 1
B(h+ 5, N − h+ 5)p

h+4(1− p)N−h+4

Here the maximum a posterior estimate for p is h+ 4/N + 8 while our posterior
mean is

B(h+ 6, N − h+ 5)
B(h+ 5, N − h+ 5) = h+ 5

N + 10 .

In the situation of 55 heads out of 100, the maximum a posteriori estimate is
.546 and the posterior mean is .545. These numbers have been pulled just a
bit towards .5 because our prior knowledge makes us a little bit biased towards
p = .5.

References
[1] Bertsekas, D. P. and Tsitsiklis, J. N. (2008). Introduction to probability.

Athena Scientific.

28



Figure 9: Beta(5,5) Prior
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