
1 Linear Regression
1.1 Introduction
Suppose that we are trying to study two quantities x and y that we suspect are
related – at least approximately – by a linear equation y = ax+ b. Sometimes
this linear relationship is predicted by theoretical considerations, and sometimes
it is just an empirical hypothesis.

For example, if we are trying to determine the velocity of an object travelling
towards us at constant speed, and we measure measure the distances d1, d2, . . . , dn

between us and the object at a series of times t1, t2, . . . , tn, then since “distance
equals rate times time” we have a theoretical foundation for the assumption
that d = rt + b for some constants r and b. On the other hand, because of
unavoidable experimental errors, we can’t expect that this relationship will hold
exactly for the observed data; instead, we likely get a graph like that shown in
fig. 1. We’ve drawn a line on the plot that seems to capture the true slope (and
hence velocity) of the object.

Figure 1: Physics Experiment

On the other hand, we might look at a graph such as fig. 2, which plots the
gas mileage of various car models against their engine size (displacement), and
observe a general trend in which bigger engines get lower mileage. In this
situation we could ask for the best line of the form y = mx+ b that captures
this relationship and use that to make general conclusions without necessarily
having an underlying theory.

1.2 Least Squares (via Calculus)
In either of the two cases above, the question we face is to determine the line
y = mx + b that “best fits” the data {(xi, yi)N

i=1}. The classic approach is to
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Figure 2: MPG vs Displacement ( [1] )

determine the equation of a line y = mx+ b that minimizes the “mean squared
error”:

MSE(m, b) = 1
N

n∑
i=1

(yi −mxi − b)2

It’s worth emphasizing that the MSE is a function of two variables – the slope
m and the intercept b – and that the data points {(xi, yi)} are constants for
these purposes. Furthermore, it’s a quadratic function in those two variables.
Since our goal is to find m and b that minimize the MSE, we have a Calculus
problem that we can solve by taking partial derivatives and setting them to zero.

To simplify the notation, let’s abbreviate MSE by E.

∂E

∂m
= 1
N

N∑
1
−2xi(yi −mxi − b)

∂E

∂b
= 1
N

N∑
1
−2(yi −mxi − b)

We set these two partial derivatives to zero, so we can drop the −2 and regroup
the sums to obtain two equations in two unknowns (we keep the 1

N because it is
illuminating in the final result):
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(1)

In these equations, notice that 1
N

∑N
i=1 xi is the average (or mean) value of the

xi. Let’s call this x. Similarly, 1
N

∑N
i=1 yi is the mean of the yi, and we’ll call it

y. If we further simplify the notation and write Sxx for 1
N

∑N
i=1 x

2
i and Sxy for

1
N

∑N
i=1 xiyi then we can write down a solution to this system using Cramer’s

rule:

m = Sxy − xy
Sxx − x2

b = Sxxy − Sxyx

Sxx − x2

(2)

where we must have Sxx − x2 6= 0.

1.2.1 Exercises

1. Verify that eq. 2 is in fact the solution to the system in eq. 1.

2. Suppose that Sxx − x2 = 0. What does that mean about the xi? Does it
make sense that the problem of finding the “line of best fit” fails in this
case?

1.3 Least Squares (via Geometry)
In our discussion above, we thought about our data as consisting of N pairs
(xi, yi) corresponding to n points in the xy-plane R2. Now let’s turn that picture
“on its side,” and instead think of our data as consisting of two points in Rn:

X =


x1
x2
...
xn

 and Y =


y1
y2
...
yn


Let’s also introduce one other vector
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E =


1
1
...
1

 .
First, let’s assume that E and X are linearly independent. If not, then X is a
constant vector (why?) which we already know is a problem from section 1.2,
Exercise 2. Therefore E and X span a plane in Rn.

Figure 3: Distance to A Plane

Now if our data points (xi, yi) all did lie on a line y = mx+ b, then the three
vectors X, Y , and E would be linearly dependent:

Y = mX + bE.

Since our data is only approximately linear, that’s not the case. So instead we
look for an approximate solution. One way to phrase that is to ask:

What is the point Ŷ in the plane H spanned by X and E in Rn which is closest
to Y ?

If we knew this point Ŷ , then since it lies in H we would have Ŷ = mX + bE
and the coefficients m and b would be a candidate for defining a line of best fit
y = mx + b. Finding the point in a plane closest to another point in Rn is a
geometry problem that we can solve.

Proposition: The point Ŷ in the plane spanned by X and E is the point such
that the vector Y − Ŷ is perpendicular to H.
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Proof: See fig. 3 for an illustration – perhaps you are already convinced by this,
but let’s be careful. Ŷ = mX + bE such that

D = ‖Y − Ŷ ‖2 = ‖Y −mX − bE‖2

is minimal. Using some vector calculus, we have

∂D

∂m
= ∂

∂m
(Y −mX − bE) · (Y −mX − bE) = −2(Y −mX − bE) ·X

and

∂D

∂b
= ∂

∂b
(Y −mX − bE) · (Y −mX − bE) = −2(Y −mX − bE) · E.

So both derivatives are zero exactly when Ŷ = (Y −mX − bE) is orthogonal to
both X and E, and therefore every vector in H.

We also obtain equations for m and b just as in our first look at this problem.

m(X · E) + b(E · E) = (Y · E)
m(X ·X) + b(E ·X) = (Y ·X)

(3)

We leave it is an exercise below to check that these are the same equations that
we obtained in eq. 2.

1.3.1 Exercises

1. Verify that eq. 2 and eq. 3 are equivalent.

1.4 The Multivariate Case (Calculus)
Having worked through the problem of finding a “line of best fit” from two points
of view, let’s look at a more general problem. We looked above at a scatterplot
showing the relationship between gas mileage and engine size (displacement).
There are other factors that might contribute to gas mileage that we want to
consider as well – for example: - a car that is heavy compared to its engine
size may get worse mileage - a sports car with a drive train that gives fast
acceleration as compared to a car with a transmission designed for long trips
may have different mileage for the same engine size.

Suppose we wish to use engine displacement, vehicle weight, and acceleration
all together to predict mileage. Instead of looking points (xi, yi) where xi is
the displacement of the ith car model and we try to predict a value y from a
corresponding x as y = mx+ b – let’s look at a situation in which our measured
value y depends on multiple variables – say displacement d, weight w, and
acceleration a with k = 3 – and we are trying to find the best linear equation
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y = m1d+m2w +m3a+ b (4)

But to handle this situation more generally we need to adopt a convention that
will allow us to use indexed variables instead of d, w, and a. We will use the
tidy data convention.

Tidy Data: A dataset is tidy if it consists of values xij for i = 1, . . . , N and
j = 1, . . . , k so that:

• the row index corresponds to a sample – a set of measurements from a
single event or item;

• the column index corresponds to a feature – a particular property measured
for all of the events or items.

In our case,

• the samples are the different types of car models,
• the features are the properties of those car models.

For us, N is the number of different types of cars, and k is the number of
properties we are considering. Since we are looking at displacement, weight, and
acceleration, we have k = 3.

So the “independent variables” for a set of data that consists of N samples, and
k measurements for each sample, can be represented by a N × k matrix

X =


x11 x12 · · · x1k

x21 x22 · · · x2k

...
... . . . ...

xN1 xk2 · · · xNk


and the measured dependent variables Y are a column vector

Y =


y1
y2
...
yN

 .

If m1, . . . ,mk are “slopes” associated with these properties in eq. 4, and b is the
“intercept,” then the predicted value Ŷ is given by a matrix equation

Ŷ = X


m1
m2
· · ·
mk

 +


1
1
· · ·
1

 b
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and our goal is to choose these parameters mi and b to make the mean squared
error:

MSE(m1, . . . ,mk, b) = ‖Y − Ŷ ‖2 =
N∑

i=1
(yi −

k∑
j=1

xijmj − b)2.

Here we are summing over the N different car models, and for each model taking
the squared difference between the true mileage yi and the “predicted” mileage∑k

j=1 xijmj + b. We wish to minimize this MSE.

Let’s make one more simplification. The intercept variable b is annoying because
it requires separate treatment from the mi. But we can use a trick to eliminate
the need for special treatment. Let’s add a new feature to our data matrix (a
new column) that has the constant value 1.

X =


x11 x12 · · · x1k 1
x21 x22 · · · x2k 1
...

... . . . ... 1
xN1 xk2 · · · xNk 1


Now our data matrix X is N × (k+ 1) and we can put our “intercept” b = mk+1
into our vector of “slopes” m1, . . . ,mk,mk+1:

Ŷ = X


m1
m2
· · ·
mk

mk+1

 .

and our MSE becomes

MSE(M) = ‖Y −XM‖2

where

M =


m1
m2
· · ·
mk

mk+1

 .

Remark: Later on (see section 1.6) we will see that if we “center” our features
about their mean, by subtracting the average value of each column of X from
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that column; and we also subtract the average value of Y from the entries of Y ,
then the b that emerges from the least squares fit is zero. As a result, instead of
adding a column of 1’s, you can change coordinates to center each feature about
its mean, and keep your X matrix N × k.

The Calculus approach to minimizing the MSE is to take its partial derivatives
with respect to the mi and set them to zero. Let’s first work out the derivatives
in a nice form for later.

Proposition: The gradient of MSE(M) = E is given by

∇E =


∂

∂M1
E

∂
∂M2

E
...

∂
∂mM+1

E

 = −2XᵀY + 2XᵀXM (5)

where Xᵀ is the transpose of X.

Proof: First, remember that the ij entry of Xᵀ is the ji entry of X. Also, we
will use the notation X[j, :] to mean the jth row of X and X[:, i] to mean the
ith column of X. (This is copied from the Python programming language; the ‘:’
means that index runs over all possibilities).

Since

E =
N∑

j=1
(Yj −

k+1∑
s=1

XjsMs)2

we compute:
∂

∂Mt
E = −2

N∑
j=1

Xjt(Yj −
k+1∑
s=1

XjsMs)

= −2(
N∑

j=1
YjXjt −

N∑
j=1

k+1∑
s=1

XjtXjsMs)

= −2(
N∑

j=1
Xᵀ

tjYj −
N∑

j=1

k+1∑
s=1

Xᵀ
tjXjsMs)

= −2(Xᵀ[t, :]Y −
k+1∑
s=1

N∑
j=1

Xᵀ
tjXjsMs)

= −2(Xᵀ[t, :]Y −
k+1∑
s=1

(XᵀX)tsMs)

= −2(Xᵀ[t, :]Y − (XᵀX)[t, :]M)

(6)

Stacking up the different rows to make E yields the desired formula.
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Proposition: Assume that D = XᵀX is invertible (notice that it is a (k+ 1)×
(k + 1) square matrix so this makes sense). The solution M to the multivariate
least squares problem is

M = D−1XᵀY (7)

and the “predicted value” Ŷ for Y is

Ŷ = XD−1XᵀY. (8)

1.5 The Multivariate Case (Geometry)
Let’s look more closely at the equation obtained by setting the gradient of the
error, eq. 5, to zero. Remember that M is the unknown vector in this equation,
everything else is known:

XᵀY = XᵀXM

Here is how to think about this:

1. As M varies, the N × 1 matrix XM varies over the space spanned by the
columns of the matrix X. So as M varies XM is a general element of the
subspace H of RN spanned by the k + 1 columns of X.

2. The product XᵀXM is a (k+ 1)× 1 matrix. Each entry is the dot product
of the general element of H with one of the k + 1 basis vectors of H.

3. The product XᵀY is a (k+ 1)×1 matrix whose entries are the dot product
of the basis vectors of H with Y .

Therefore, this equation asks for us to find M so that the vector XM in H has
the same dot products with the basis vectors of H as Y does. The condition

Xᵀ · (Y −XM) = 0

says that Y −XM is orthogonal to H. This argument establishes the following
proposition.

Proposition: Just as in the simple one-dimensional case, the predicted value Ŷ
of the least squares problem is the point in H closest to Y – or in other words
the point Ŷ in H such that Y − Ŷ is perpendicular to H.

1.5.1 Orthogonal Projection

Recall that we introduced the notation D = XᵀX, and let’s assume, for now,
that D is an invertible matrix. We have the formula (see eq. 8):

Ŷ = XD−1XᵀY.
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Proposition: The matrix P = XD−1Xᵀ is an N × N matrix called the
orthogonal projection operator onto the subspace H spanned by the columns of
X. It has the following properties:

• PY belongs to the subspace H for any Y ∈ RN .
• (Y − PY ) is orthogonal to H.
• P ∗ P = P .

Proof: First of all, PY = XD−1XᵀY so PY is a linear combination of the
columns of X and is therefore an element of H. Next, we can compute the dot
product of PY against a basis of H by computing

XᵀPY = XᵀXD−1XᵀY = XᵀY

since XᵀX = D. This equation means that Xᵀ(Y −PY ) = 0 which tells us that
Y − PY has dot product zero with a basis for H. Finally,

PP = XD−1XᵀXD−1Xᵀ = XD−1Xᵀ = P.

It should be clear from the above discussion that the matrix D = XᵀX plays an
important role in the study of this problem. In particular it must be invertible
or our analysis above breaks down. In the next section we will look more closely
at this matrix and what information it encodes about our data.

1.6 Centered coordinates
Recall from last section that the matrix D = XᵀX is of central importance to
the study of the multivariate least squares problem. Let’s look at it more closely.

Lemma: The i, j entry of D is the dot product

Dij = X[:, i] ·X[:, j]

of the ith and jth columns of X.

Proof: In the matrix multiplication XᵀX, the ith row of Xᵀ gets “dotted” with
the jth column of X to product the i, j entry. But the ith row of Xᵀ is the ith

column of X, as asserted in the statement of the lemma.

A crucial point in our construction above relied on the matrix D being invertible.
The following Lemma shows that D fails to be invertible only when the different
features (the columns of X) are linearly dependent.

Lemma: D is not invertible if and only if the columns of X are linearly
dependent.

Proof: If the columns of X are linearly dependent, then there is a nonzero
vector m so that Xm = 0. In that case clearly Dm = XᵀXm = 0 so D is not
invertible. Suppose D is not invertible. Then there is a nonzero vector m with

10



Dm = XᵀXm = 0. This means that the vector Xm is orthogonal to all of the
columns of X. Since Xm belongs to the span H of the columns of X, if it is
orthogonal to H it must be zero.

In fact, the matrix D captures some important statistical measures of our data,
but to see this clearly we need to make a slight change of basis. First recall that
X[:, k + 1] is our column of all 1, added to handle the intercept. As a result, the
dot product X[:, i] ·X[:, k + 1] is the sum of the entries in the ith column, and
so if we let µi denote the average value of the entries in column i, we have

µi = 1
N

(X[:, i] ·X[:, k + 1])

Now change the matrix X by elementary column operations to obtain a new
data matrix X0 by setting

X0[:, i] = X[:, i]− 1
N

(X[:, i] ·X[:, k + 1])X[:, k + 1] = X[:, i]− µiX[:, k + 1]

for i = 1, . . . , k.

In terms of the original data, we are changing the measurement scale of the data
so that each feature has average value zero, and the subspace H spanned by
the columns of X0 is the same as that spanned by the columns of X. Using X0
instead of X for our least squares problem, we get

Ŷ = X0D
−1
0 Xᵀ

0 Y

and

M0 = D−1
0 Xᵀ

0 Y

where D0 = Xᵀ
0X0.

Proposition: The matrix D0 has a block form. Its upper left block is a k × k
symmetric block with entries

(D0)ij = (X[:, i]− µiX[:, k + 1]) · (X[:, j]− µjX[:, k + 1])

Its (k + 1)st row and column are all zero, except for the (k + 1), (k + 1) entry,
which is N .

Proof: This follows from the fact that the last row and column entries are (for
i 6= k + 1):

(X[:, i]− µiX[:, k + 1]) ·X[:, k + 1] = (X[:, i] ·X[:, k + 1])−Nµi = 0

and for i = k + 1 we have X[:, k + 1] ·X[:, k + 1] = N since that column is just
N 1’s.
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Proposition: If the x coordinates (the features) are centered so that they have
mean zero, then the intercept b is

Y = 1
N

∑
yi.

Proof: By centering the coordinates, we replace the matrix X by X0 and D by
D0. and we are trying to minimize ‖Y −X0M0‖2. Use the formula from eq. 7
to see that

M0 = D−1
0 Xᵀ

0 Y.

The b value we are interested in is the last entry mk+1 in M0. From the block
form of D0, we know that D−1

0 has bottom row and last column zero except for
1/N in position (k + 1)× (k + 1). Also Xᵀ

0 has last row consisting entirely of 1.
So the bottom entry of Xᵀ

0 Y is
∑N

i=1 yi, and the bottom entry b of D−1
0 Xᵀ

0 Y is

µY = 1
N

N∑
i=1

yi.

as claimed.

Corollary: If we make a further change of coordinates to define

Y0 = Y − µY


1
1
...
1


then the associated b is zero. As a result we can forget about the extra column
of 1′s that we added to X to account for it and reduce the dimension of our
entire problem by 1.

Just to recap, if we center our data so that µY = 0 and µi = 0 for i = 1, . . . , k,
then the least squares problem reduces to minimizing

E(M) = ‖Y −XM‖2

where X is the N × k matrix with jth row (xj1, xj2, . . . , xjk) for j = 1, . . . , N
and the solutions are as given in eq. 7 and eq. 8.

1.7 Caveats about Linear Regression
1.7.1 Basic considerations

Reflecting on our long discussion up to this point, we should take note of some
of the potential pitfalls that lurk in the use of linear regression.

1. When we apply linear regression, we are explicitly assuming that the
variable Y is associated to X via linear equations. This is a big assumption!
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2. When we use multilinear regression, we are assuming that changes in the
different features have independent effects on the target variable y. In
other words, suppose that y = ax1 + bx2. Then an increase of x1 by 1
increases y by a, and an increase of x2 by 1 increases y by b. These effects
are independent of one another and combine to yield an increase of a+ b.

3. We showed in our discussion above that linear regression problem has a
solution when the matrix D = XᵀX is invertible, and this happens when
the columns of D are linearly independent. When working with real data,
which is messy, we could have a situation in which the features we are
studying are, in fact, dependent – but because of measurement error, the
samples that we collected aren’t. In this case, the matrix D will be “close”
to being non-invertible, although formally still invertible. In this case,
computing D−1 leads to numerical instability and the solution we obtain
is very unreliable.

1.7.2 Simpson’s Effect

Simpson’s effect is a famous phenomenon that illustrates that linear regression
can be very misleading in some circumstances. It is often a product of “pooling”
results from multiple experiments. Suppose, for example, that we are studying
the relationship between a certain measure of blood chemistry and an individual’s
weight gain or less on a particular diet. We do our experiments in three labs,
the blue, green, and red labs. Each lab obtains similar results – higher levels
of the blood marker correspond to greater weight gain, with a regression line
of slope around 1. However, because of differences in the population that each
lab is studying, some populations are more susceptible to weight gain and so
the red lab sees a mean increase of almost 9 lbs while the blue lab sees a weight
gain of only 3 lbs on average.

The three groups of scientists pool their results to get a larger sample size and do
a new regression. Surprise! Now the regression line has slope −1.6 and increasing
amounts of the marker seem to lead to less weight gain!

This is called Simpson’s effect, or Simpson’s paradox, and it shows that unknown
factors (confounding factors) may cause linear regression to yield misleading
results. This is particularly true when data from experiments conducted under
different conditions is combined; in this case, the differences in experimental
setting, called batch effects, can throw off the analysis very dramatically. See
fig. 4 .

1.7.3 Exercises

1. When proving that D is invertible if and only if the columns of X are
linearly independent, we argued that if XᵀXm = 0 for a nonzero vector
m, then Xm is orthogonal to the span of the columns of X, and is also an
element of that span, and is therefore zero. Provide the details: show that
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Figure 4: Simpson’s Effect

if H is a subspace of RN , and x is a vector in H such that x · h = 0 for all
h ∈ H, then x = 0.
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