
6. Field Extensions

Field Extensions
Splitting Fields (Normal Extensions)
Definition

Definition: Let f(x) ∈ F [x] be a polynomial and let K/F be an extension field.
K is called a splitting field for f(x) if

• f splits into linear factors in K
• f does not split into linear factors over any proper subfield of K.

Splitting fields exist

Proposition: Any polynomial f(x) ∈ F [x] has a splitting field.

Proof: If all irreducible factors of f(x) have degree 1 then F is a splitting field.
Otherwise, let α be a root of an irreducible factor of f of degree greater than
1 and let F1 = F (α). Write f(x) = (x − α)f1(x) and, by induction, let E be
a splitting field for f1(x) over F (α). Then all the roots of f(x) belong to E.
Let K be the subfield of E generated over F by the roots of f(x). This is your
splitting field.

Remark: Some books say that if K/F is the splitting field over F for a
polynomial, then K is called a normal extension.

Degrees of splitting fields

Proposition: If f(x) ∈ F [x] has degree n then its splitting field has degree at
most n!.

Proof: It can be obtained by adjoining roots successively of polynomials of degree
n, n− 1, . . . .

Examples
1. f(x) = (x2 − 2)(x2 − 3). Splitting field is Q(

√
2,
√

3) which has degree 4.
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2. f(x) = x3 − 2 which is irreducible by Eisenstein. Three roots are
3
√

2, ω 3
√

2, ω2 3
√

2 where ω = e2πi/3 is a cube root of one. Since

ω = −1 +
√
−3

2

this field has degree six and contains
√
−3.

3. x4 +4 “looks irreducible” but it isn’t. It factors as (x2 +2x+2)(x2−2x+2).
It splits over the field Q(i) because (±1± i)2 = ±2i so (±1± i)4 = −4.

4. The splitting field of xn−1 is called the nth cyclotomic field and is generated
by e2πa/n where a is an integer relatively prime to n. If n is prime, then
xp − 1 then it factors as (x− 1)(1 + x+ · · ·+ xp−1); the second factor is
irreducible so that field has degree p− 1.

5. The splitting field of xp − 2 has degree p(p− 1).

Uniqueness of splitting fields
Extensions of isomorphisms

Theorem: (DF Theorem 27 p. 541) Let φ : F → F ′ be a field isomorphism.
Let f(x) ∈ F [x] and let f ′(x) ∈ F ′[x] be the polynomial obtained from f by
applying φ to its coefficients. Let E/F be a splitting field of f and let E′/F ′ be
a splitting field of f ′. Then there is an isomorphism σ : E → E′ which makes
the following diagram commutative (the vertical arrows are the inclusion maps):

E
σ // E′

F

OO

φ // F ′

OO

Corollary: Any two splitting fields for f(x) are isomorphic via an isomorphism
that is the identity on F .

More on extensions

The extension theorem can seem a little mysterious. Let’s look more closely at
an application.

Let f(x) = x3 − 2 and let E/Q be its splitting field (which has degree 6 over
Q). Inside this field there are three isomorphic cubic extensions: L1 = Q( 3

√
2),

L2 = Q(ω 3
√

2), and L3 = Q(ω2 3
√

2) where ω = e2πi/3 is a cube root of unity.
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E

L1

>>

L2

OO

L3

``

Q

>>OO``

Now E is a splitting field for f(x) over each of L1, L2, and L3.

Still more on extensions

We can apply the theorem to (for example) the diagram

E
σ // E

Q( 3
√

2)

OO

φ // Q(ω 3
√

2)

OO

where φ is the isomorphism that sends 3
√

2→ ω 3
√

2 and fixes Q. It follows that
there is an automorphism σ of the splitting field that extends φ.

Automorphisms of splitting fields of irreducibles

In general, if f(x) is an irreducible polynomial over F , and α and β are two
roots of f(x) in its splitting field E/F , then there is an automorphism E → E
fixing F sending α to β. In particular the automorphism group of E fixing F
permutes the roots of f(x) transitively.

Proof of the extension theorem

The proof is by induction. If all roots of f(x) belong to F , then all roots of
f ′(x) belong to F ′, and E = F and E′ = F ′ so the identity map works. Now
suppose we know the result for all f of degree less than n and suppose that f
is of degree n. Choose an irreducible factor p(x) of f(x) of degree at least 2,
and the corresponding factor p′(x) of f ′(x). Since F [x]/p(x) is isomorphic to
F ′[x]/p′(x), we have an isomorphism
phi′ : F (α)→ F ′(β) that restricts to φ : F → F ′.

Let f(x) = (x−α)f1(x) and f ′(x) = (x−β)f ′1(x). Now E (resp. E′) is a splitting
field for f1 (resp f ′1) and by induction we have an isomorphism σ : E → E′ that
restricts to φ′ : F (α) → F ′(β). This σ also restricts to φ : F → F ′ (since φ′
does).
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Another property of splitting fields

Proposition: Let K/F be the splitting field of a polynomial. Then if g(x) ∈
F [x] is any irreducible polynomial over F , and α ∈ K is a root of g(x), then all
roots of g(x) belong to K. (In other words, if K/F is a splitting field for some
polynomial, then any polynomial in F [x] is either irreducible or splits into linear
factors over K.)

Proof: Suppose that K is the splitting field of f(x) ∈ F [x]. Suppose that α ∈ K
and let β be another root of g(x) and consider the field K(β). Then K(β) is the
splitting field of f(x) over F (β). (K contains all the roots of f(x), and it must
contain β if it contains F (β). ) But then we have the diagram:

K // K(β)

F (α)

OO

// F (β)

OO

The extension theorem tells us that there is an isomorphism from K to K(β)
carrying F (α) to F (β) and fixing the field F . Therefore [K : F ] = [K(β) : F ].
But then

[K(β) : F ] = [K(β) : K][K : F ].

This forces [K(β) : K] = 1 so β ∈ K.

Algebraic Closures
Algebraic closure

Definition: A field F is algebraically closed if it has no nontrivial algebraic
extensions; in other words, if every irreducible polynomial over F has degree 1.

Definition: If F is a field, then F is an algebraic closure of F if F/F is algebraic
and every polynomial in F [x] splits completely in F .

So notice that the complex numbers are algebraically closed, but they are not
an algebraic closure of Q, because they contain transcendental elements.

Algebraic closures are algebraically closed.

Lemma: If F is an algebraic closure of F , then F is algebraically closed.

This lemma says that if every polynomial with coefficients in F has a root in F ,
then every polynomial with coefficients in F has a root in F .

To prove this, let f(x) ∈ F [x]. Let F1/F be the extension of F generated by
the coefficients of f . Since F1 is generated by finitely many algebraic elements,
F1/F is finite and a root α of f(x) ∈ F1[x] is finite over F1. Therefore f has a
root in a finite extension of F , which is therefore in F .
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Every field has an algebraic closure

Theorem: Given a field F , there exists an algebraically closed field containing
F .

Proof: See Proposition 30 in DF on p. 544.

Theorem: If K/F is algebraically closed, then the collection of elements of K
that are algebraic over F is an algebraic closure of F .

Since C is algebraically closed, the set of algebraic numbers inside C is an
algebraic closure of Q. The construction of R and C is primarily by analysis,
and the proof that C is algebraically closed is also analytic – at least, the usual
proof.

Separability
Separability is a phenomenon that is important when studying polynomials over
fields of characteristic p.

Definition: A polynomial is separable if it has distinct roots, and inseparable if
it has repeated roots.

Proposition: An irreducible polynomial over a field with characteristic 0 is
separable. It is inseparable over a field with characteristic p if and only if its
derivative is zero.

Proof: If α is a repeated root of a polynomial f(x), then f ′(α) = 0 where f ′
is the “formal derivative” of f . Conversely, if α is a common root of f(x) and
f ′(x), then α is a multiple root of f(x). This is because of the product rule; on
the one hand:

d

dx
((x− a)rg(x)) = r(x− a)r−1g(x) + (x− a)rg(x)

so if a is a multiple root, then it is a root of f ′(x). On the other hand, if a is a
common root of f(x) and f ′(x), write

f(x) = (x− a)g(x)

so

f ′(x) = (x− a)g′(x) + g(x).

Since f ′(a) = 0, we have g(a) = 0 so g(x) is divisible by (x− a).

Now if f(x) is irreducible, then since f ′(x) has degree less than f(x), if it is
nonzero it is relatively prime to f(x). In characteristic 0, it is automatically
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nonzero. In characteristic p, it could be zero. For example the derivative of
xp − a is zero.

Notice that if a polynomial has derivative zero (over a field of characteristic
p) it must be a polynomial in xp. From this one can see that any irreducible
polynomial f(x) over a field with characteristic p is of the form f0(xpk ) for some
power of p, and f0(x) is a separable polynomial.

The Frobenius map
If F is a field of characteristic p, then the map φ : F → F given by φ(x) = xp is
a field endomorphism called the Frobenius map or the Frobenius endomorphism.

If the Frobenius map is surjective, then evey irreducible polynomial over F is
separable. Such a field is called perfect.

View as slides
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