6. Field Extensions

Field Extensions

Splitting Fields (Normal Extensions)

Definition

Definition: Let $f(x) \in F[x]$ be a polynomial and let K / F be an extension field. K is called a splitting field for $f(x)$ if

- f splits into linear factors in K
- f does not split into linear factors over any proper subfield of K.

Splitting fields exist

Proposition: Any polynomial $f(x) \in F[x]$ has a splitting field.
Proof: If all irreducible factors of $f(x)$ have degree 1 then F is a splitting field. Otherwise, let α be a root of an irreducible factor of f of degree greater than 1 and let $F_{1}=F(\alpha)$. Write $f(x)=(x-\alpha) f_{1}(x)$ and, by induction, let E be a splitting field for $f_{1}(x)$ over $F(\alpha)$. Then all the roots of $f(x)$ belong to E. Let K be the subfield of E generated over F by the roots of $f(x)$. This is your splitting field.

Remark: Some books say that if K / F is the splitting field over F for a polynomial, then K is called a normal extension.

Degrees of splitting fields

Proposition: If $f(x) \in F[x]$ has degree n then its splitting field has degree at most n !.

Proof: It can be obtained by adjoining roots successively of polynomials of degree $n, n-1, \ldots$

Examples

1. $f(x)=\left(x^{2}-2\right)\left(x^{2}-3\right)$. Splitting field is $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ which has degree 4 .
2. $f(x)=x^{3}-2$ which is irreducible by Eisenstein. Three roots are $\sqrt[3]{2}, \omega \sqrt[3]{2}, \omega^{2} \sqrt[3]{2}$ where $\omega=e^{2 \pi i / 3}$ is a cube root of one. Since

$$
\omega=\frac{-1+\sqrt{-3}}{2}
$$

this field has degree six and contains $\sqrt{-3}$.
3. $x^{4}+4$ "looks irreducible" but it isn't. It factors as $\left(x^{2}+2 x+2\right)\left(x^{2}-2 x+2\right)$. It splits over the field $\mathbb{Q}(i)$ because $(\pm 1 \pm i)^{2}= \pm 2 i$ so $(\pm 1 \pm i)^{4}=-4$.
4. The splitting field of $x^{n}-1$ is called the $n^{\text {th }}$ cyclotomic field and is generated by $e^{2 \pi a / n}$ where a is an integer relatively prime to n. If n is prime, then $x^{p}-1$ then it factors as $(x-1)\left(1+x+\cdots+x^{p-1}\right)$; the second factor is irreducible so that field has degree $p-1$.
5 . The splitting field of $x^{p}-2$ has degree $p(p-1)$.

Uniqueness of splitting fields

Extensions of isomorphisms

Theorem: (DF Theorem 27 p. 541) Let $\phi: F \rightarrow F^{\prime}$ be a field isomorphism. Let $f(x) \in F[x]$ and let $f^{\prime}(x) \in F^{\prime}[x]$ be the polynomial obtained from f by applying ϕ to its coefficients. Let E / F be a splitting field of f and let E^{\prime} / F^{\prime} be a splitting field of f^{\prime}. Then there is an isomorphism $\sigma: E \rightarrow E^{\prime}$ which makes the following diagram commutative (the vertical arrows are the inclusion maps):

Corollary: Any two splitting fields for $f(x)$ are isomorphic via an isomorphism that is the identity on F.

More on extensions

The extension theorem can seem a little mysterious. Let's look more closely at an application.
Let $f(x)=x^{3}-2$ and let E / \mathbb{Q} be its splitting field (which has degree 6 over $\mathbb{Q})$. Inside this field there are three isomorphic cubic extensions: $L_{1}=\mathbb{Q}(\sqrt[3]{2})$, $L_{2}=\mathbb{Q}(\omega \sqrt[3]{2})$, and $L_{3}=\mathbb{Q}\left(\omega^{2} \sqrt[3]{2}\right)$ where $\omega=e^{2 \pi i / 3}$ is a cube root of unity.

Now E is a splitting field for $f(x)$ over each of L_{1}, L_{2}, and L_{3}.

Still more on extensions

We can apply the theorem to (for example) the diagram

where ϕ is the isomorphism that sends $\sqrt[3]{2} \rightarrow \omega \sqrt[3]{2}$ and fixes \mathbb{Q}. It follows that there is an automorphism σ of the splitting field that extends ϕ.

Automorphisms of splitting fields of irreducibles

In general, if $f(x)$ is an irreducible polynomial over F, and α and β are two roots of $f(x)$ in its splitting field E / F, then there is an automorphism $E \rightarrow E$ fixing F sending α to β. In particular the automorphism group of E fixing F permutes the roots of $f(x)$ transitively.

Proof of the extension theorem

The proof is by induction. If all roots of $f(x)$ belong to F, then all roots of $f^{\prime}(x)$ belong to F^{\prime}, and $E=F$ and $E^{\prime}=F^{\prime}$ so the identity map works. Now suppose we know the result for all f of degree less than n and suppose that f is of degree n. Choose an irreducible factor $p(x)$ of $f(x)$ of degree at least 2 , and the corresponding factor $p^{\prime}(x)$ of $f^{\prime}(x)$. Since $F[x] / p(x)$ is isomorphic to $F^{\prime}[x] / p^{\prime}(x)$, we have an isomorphism $p h i^{\prime}: F(\alpha) \rightarrow F^{\prime}(\beta)$ that restricts to $\phi: F \rightarrow F^{\prime}$.

Let $f(x)=(x-\alpha) f_{1}(x)$ and $f^{\prime}(x)=(x-\beta) f_{1}^{\prime}(x)$. Now E (resp. E^{\prime}) is a splitting field for f_{1} (resp f_{1}^{\prime}) and by induction we have an isomorphism $\sigma: E \rightarrow E^{\prime}$ that restricts to $\phi^{\prime}: F(\alpha) \rightarrow F^{\prime}(\beta)$. This σ also restricts to $\phi: F \rightarrow F^{\prime}$ (since ϕ^{\prime} does).

Another property of splitting fields

Proposition: Let K / F be the splitting field of a polynomial. Then if $g(x) \in$ $F[x]$ is any irreducible polynomial over F, and $\alpha \in K$ is a root of $g(x)$, then all roots of $g(x)$ belong to K. (In other words, if K / F is a splitting field for some polynomial, then any polynomial in $F[x]$ is either irreducible or splits into linear factors over K.)

Proof: Suppose that K is the splitting field of $f(x) \in F[x]$. Suppose that $\alpha \in K$ and let β be another root of $g(x)$ and consider the field $K(\beta)$. Then $K(\beta)$ is the splitting field of $f(x)$ over $F(\beta)$. (K contains all the roots of $f(x)$, and it must contain β if it contains $F(\beta)$.) But then we have the diagram:

The extension theorem tells us that there is an isomorphism from K to $K(\beta)$ carrying $F(\alpha)$ to $F(\beta)$ and fixing the field F. Therefore $[K: F]=[K(\beta): F]$. But then

$$
[K(\beta): F]=[K(\beta): K][K: F] .
$$

This forces $[K(\beta): K]=1$ so $\beta \in K$.

Algebraic Closures

Algebraic closure

Definition: A field F is algebraically closed if it has no nontrivial algebraic extensions; in other words, if every irreducible polynomial over F has degree 1.
Definition: If F is a field, then \bar{F} is an algebraic closure of F if \bar{F} / F is algebraic and every polynomial in $F[x]$ splits completely in \bar{F}.

So notice that the complex numbers are algebraically closed, but they are not an algebraic closure of \mathbb{Q}, because they contain transcendental elements.

Algebraic closures are algebraically closed.

Lemma: If \bar{F} is an algebraic closure of F, then \bar{F} is algebraically closed.
This lemma says that if every polynomial with coefficients in F has a root in \bar{F}, then every polynomial with coefficients in \bar{F} has a root in F.

To prove this, let $f(x) \in \bar{F}[x]$. Let F_{1} / F be the extension of F generated by the coefficients of f. Since F_{1} is generated by finitely many algebraic elements, F_{1} / F is finite and a root α of $f(x) \in F_{1}[x]$ is finite over F_{1}. Therefore f has a root in a finite extension of F, which is therefore in \bar{F}.

Every field has an algebraic closure

Theorem: Given a field F, there exists an algebraically closed field containing F.

Proof: See Proposition 30 in DF on p. 544.
Theorem: If K / F is algebraically closed, then the collection of elements of K that are algebraic over F is an algebraic closure of F.

Since \mathbb{C} is algebraically closed, the set of algebraic numbers inside \mathbb{C} is an algebraic closure of \mathbb{Q}. The construction of \mathbb{R} and \mathbb{C} is primarily by analysis, and the proof that \mathbb{C} is algebraically closed is also analytic - at least, the usual proof.

Separability

Separability is a phenomenon that is important when studying polynomials over fields of characteristic p.

Definition: A polynomial is separable if it has distinct roots, and inseparable if it has repeated roots.
Proposition: An irreducible polynomial over a field with characteristic 0 is separable. It is inseparable over a field with characteristic p if and only if its derivative is zero.

Proof: If α is a repeated root of a polynomial $f(x)$, then $f^{\prime}(\alpha)=0$ where f^{\prime} is the "formal derivative" of f. Conversely, if α is a common root of $f(x)$ and $f^{\prime}(x)$, then α is a multiple root of $f(x)$. This is because of the product rule; on the one hand:

$$
\frac{d}{d x}\left((x-a)^{r} g(x)\right)=r(x-a)^{r-1} g(x)+(x-a)^{r} g(x)
$$

so if a is a multiple root, then it is a root of $f^{\prime}(x)$. On the other hand, if a is a common root of $f(x)$ and $f^{\prime}(x)$, write

$$
f(x)=(x-a) g(x)
$$

so

$$
f^{\prime}(x)=(x-a) g^{\prime}(x)+g(x)
$$

Since $f^{\prime}(a)=0$, we have $g(a)=0$ so $g(x)$ is divisible by $(x-a)$.
Now if $f(x)$ is irreducible, then since $f^{\prime}(x)$ has degree less than $f(x)$, if it is nonzero it is relatively prime to $f(x)$. In characteristic 0 , it is automatically
nonzero. In characteristic p, it could be zero. For example the derivative of $x^{p}-a$ is zero.

Notice that if a polynomial has derivative zero (over a field of characteristic p) it must be a polynomial in x^{p}. From this one can see that any irreducible polynomial $f(x)$ over a field with characteristic p is of the form $f_{0}\left(x^{p^{k}}\right)$ for some power of p, and $f_{0}(x)$ is a separable polynomial.

The Frobenius map

If F is a field of characteristic p, then the map $\phi: F \rightarrow F$ given by $\phi(x)=x^{p}$ is a field endomorphism called the Frobenius map or the Frobenius endomorphism.

If the Frobenius map is surjective, then evey irreducible polynomial over F is separable. Such a field is called perfect.

View as slides

