5. Field Theory Basics

Basics of field theory

Things to remember from before.
We already know quite a bit about fields.

Characteristic

If F is a field, then there is a ring homomorphism $\mathbb{Z} \rightarrow F$ sending $1 \rightarrow 1$. If this map is injective, then:

- we say F has characteristic zero
- F contains a copy of the rational numbers
- The field \mathbb{Q} is the prime subfield of F.

Otherwise the kernel of this map must be a prime ideal $p \mathbb{Z}$ of \mathbb{Z}. In this case:

- we say that F has characteristic p
- F contains a copy of $\mathbb{Z} / p \mathbb{Z}$.
- $\mathbb{Z} / p \mathbb{Z}$ is the prime subfield of F.

Maps

If $f: F \rightarrow E$ is a homomorphism of fields, it is automatically injective (or zero).
The only field maps $f: \mathbb{Q} \rightarrow \mathbb{Q}$ and $f: \mathbb{Z} / p \mathbb{Z} \rightarrow \mathbb{Z} / p \mathbb{Z}$ are the identity.

Extensions

If F is a field, and $F \subset E$ where E is another field, then we call E an extension field of F.
E is automatically a vector space over F. The degree of E / F, written $[E: F]$, is the dimension of E as an F-vector space.

Polynomials, quotient rings, and fields

We have the division algorithm for polynomials. $F[x]$ is a PID. An ideal is prime iff it is generated by an irreducible polynomial.
Let $p(x)$ be an irreducible polynomial of degree d over F. Then:

- $K=F[x] /(p(x))$ is a field
- It is of degree d over F.
- $p(x)$ has a root in K (namely the residue class of x)
- The elements $1, x, \ldots, x^{d-1}$ are a basis for K / F.

Adjoining roots of polynomials

If $F \subset K$ is a field extension, and $\alpha \in K$, then $F(\alpha)$ is the smallest subfield of K containing F and α. Similarly for $F\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$.

If $p(x)$ is irreducible over F, and has a root α in K, then $F(\alpha)$ is isomorphic to $F[x] / p(x)$ via the map $x \mapsto \alpha$.

Key Theorem

Let K be a field extension of F and let $p(x)$ be an irreducible polynomial over F. Suppose K contains two roots α and β of $p(x)$. Then $F(\alpha)$ and $F(\beta)$ are isomorphic via an isomorphism that is the identity on F.

More generally:
Theorem: (See Theorem 8, DF, page 519) Let $\phi: F \rightarrow F^{\prime}$ be an isomorphism of fields. Let $p(x)$ be an irreducible polynomial in $F[x]$ and let $p^{\prime}(x)$ be the polynomial in $F^{\prime}[x]$ obtained by applying ϕ to the coefficients of $p(x)$. Let K be an extension of F containing a root α of $p(x)$, and let K^{\prime} be an extension of F^{\prime} containing a root β of $p^{\prime}(x)$. Then there is an isomorphism $\sigma: F(\alpha) \rightarrow F^{\prime}(\beta)$ such that the restriction of σ to F is ϕ.

Algebraic Extensions

Definition

Definition: Let $F \subset K$ be a field extension. An element $\alpha \in K$ is algebraic over F if it is the root of a nonzero polynomial in $F[x]$. Elements that aren't algebraic are called transcendental.

An extension K / F is algebraic if every element of K is algebraic over F.

Basics

- If α is algebraic over F, there is unique monic polynomial $m_{\alpha, F}(x)$ of minimal degree with coefficients in F such that $m_{\alpha}(\alpha)=0$. (This follows from the division algorithm). This polynomial is called the minimal polynomial of α over F. Its degree is the degree of α.
- If $F \subset L$, then the minimal polynomial $m_{\alpha, L}(x) \in L[x]$ of α over L divides the minimal polynomial $m_{\alpha, F}(x)$. Again, this follows from the division algorithm for $L[x]$.
- $F(\alpha)$ is isomorphic to $F[x] / m_{\alpha, F}(x)$; and the degree $[F(\alpha): F]$ is the degree of α.

Examples

If $n>1$ and p is a prime, then the polynomial $x^{n}-p$ is irreducible over \mathbb{Q}, so $\alpha=\sqrt[n]{p}$ has degree n over \mathbb{Q}.

The polynomial $x^{3}-x-1$ is irreducible over \mathbb{Q} and has one real root α. So α has degree 3 over \mathbb{Q} but degree 1 over \mathbb{R}.

Finite extensions are algebraic

Suppose K / F is finite and let α be an element of K. Then there is an n so that the set $1, \alpha, \alpha^{2}, \ldots, \alpha^{n}$ are linearly dependent over F; so α satisfies a polynomial with F coefficients, and is therefore algebraic.

As a partial converse, if $F(\alpha) / F$ is finite if and only if α is algebraic. If α is algebraic of degree d over $F, F(\alpha)=F[x] /\left(m_{\alpha}(x)\right)$ which is finite dimensional (with basis $1, x, x^{2}, \ldots, x^{d-1}$.)

Algebraic over algebraic is algebraic

Proposition: If K / F is algebraic and L / K is algebraic then L / F is algebraic.
Proof: Let α be any element of L. It has a minimal polynomial $f(x)=$ $x^{d}+a_{d-1} x^{d-1}+\cdots+a_{0}$ with the $a_{i} \in K$. Therefore α is algebraic over $F\left(a_{0}, \ldots, a_{d-1}\right)$. Since the a_{i} are in K, they are algebraic over F, and therefore $F\left(a_{0}, \ldots, a_{d-1}\right)$ is finite over F and so is $F\left(\alpha, a_{0}, \ldots, a_{d-1}\right)$. Thus $F(\alpha)$ is contained in a finite extension of F and so α is algebraic over F.

Field Degrees

Multiplicativity of degrees

Proposition: Suppose that L / F and K / L are extensions. Then $[K: F]=[K$: $L][L: F]$.
Proof: If $\alpha_{1}, \ldots, \alpha_{n}$ are a basis for L / F, and $\beta_{1}, \ldots, \beta_{k}$ are a basis for K / L, then the products $\alpha_{i} \beta_{j}$ are a basis for K / F.

Corollary: If L / F is a subfield of K / F, then $[L: F]$ divides $[K: F]$.

Finitely generated extensions

A field K / F is finitely generated if $K=F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ for a finite set of α_{i} in K.
Proposition: $F(\alpha, \beta)=F(\alpha)(\beta)$.
Proof: $F(\alpha, \beta)$ contains $F(\alpha)$ and also β. Therefore $F(\alpha)(\beta) \subset F(\alpha, \beta)$. On the other hand, since α and β are in $F(\alpha)(\beta)$, we know that $F(\alpha, \beta) \subset F(\alpha)(\beta)$.

Finite is finitely generated

Proposition: A field K / F is finite if and only if it is finitely generated. If it is generated by $\alpha_{1}, \ldots, \alpha_{k}$ then it is of degree at most $n_{1} n_{2} \ldots n_{k}$ where n_{i} is the degree of α_{i} over F.

Proof: If it's finitely generated, then it's a sequence of extensions $F\left(\alpha_{1}, \ldots, \alpha_{s-1}\right)\left(\alpha_{s}\right)$ each of degree at most n_{i}. So K / F is finite. Conversely, if K / F is finite (and of degree greater than 1), choose $\alpha_{1} \in K$ of degree greater than 1. Then $F(\alpha) \subset K$ and $[K: F(\alpha)]$ is smaller than $[K: F]$. Now choose α_{2} in K but not $F\left(\alpha_{1}\right)$, and so on. This process must terminate.
Corollary: If α and β are algebraic over F, so are $\alpha+\beta, \alpha \beta$, and (if $\beta \neq 0$) α / β.

Proof: All these elements lie in $F(\alpha, \beta)$ which is finite over F.
Corollary: If K / F is a field extension, the subset of K consisting of algebraic elements over F is a field (called the algebraic closure of F in K).

Towers of algebraic extensions are algebraic

Propositoin: If L / K is algebraic and K / F is algebraic so is L / F.
Proof: Choose $\alpha \in L$. Then α satisfies a polynomial $f(x)=x^{d}+a_{d-1} x^{d-1}+\cdots+$ a_{0} where the a_{i} are in K. Therefore α is algebraic over $E=F\left(a_{0}, a_{1}, \ldots, a_{d-1}\right)$. But E / F is finitely generated hence finite. Therefore $[E(\alpha): F]=[E(\alpha): E][E$: $F]$ is finite. Thus every element of L is algebraic over F.

Composites

If K_{1} and K_{2} are subfields of a field K, then $K_{1} K_{2}$ is the smallest subfield of K containing these two fields. Then $\left[K_{1} K_{2}: F\right]$ is divisible by both $\left[K_{1}: F\right]$ and $\left[K_{2}: F\right]$ and in addition

$$
\left[K_{1} K_{2}: F\right] \leq\left[K_{1}: F\right]\left[K_{2}: F\right]
$$

In particular, if $\left[K_{1}: F\right]$ and $\left[K_{2}: F\right]$ are relatively prime, then $\left[K_{1} K_{2}: F\right]=$ $\left[K_{1}: F\right]\left[K_{2}: F\right]$.

Classical Constructions (Ruler and Compass)

Classical ruler and compass constructions allow one to:

- find the point of intersection of two lines.
- find the point of intersection of a line and a circle.
- find the points of intersection of two circles.

Constructions

If we begin with a line segment of length 1 , we can:

- construct a perpendicular, and then construct all integer lengths along that line
- construct all points with integer coordinates in the plane
- using similar triangles, construct all points in the plane with rational coordinates

Extensions

Now suppose we can construct all points with coordinates in a field F. Then:

- intersections of lines joining points of over F meet in points with coordinates in F
- intersections of a line joining two points with coordinates in F with a circle of radius in F yields points in a quadratic extension of F.
- intersections of two circles with radii in F yields points with coordinates in a quadratic extension of F.

Gauss's Theorem on constructibility

Theorem: If a line segment of length α is constructible by ruler and compass, then α lies in a field obtained from \mathbb{Q} by a sequence of quadratic extensions, and $[F(\alpha): F]=2^{k}$ for some integer $k \geq 0$.

Corollary: One cannot "double the cube", trisect an angle, or square the circle.
Here doubling the cube means given a length α construct a length β so that the cube with side length β has double the volume of the cube with side length α. This is impossible because $\sqrt[3]{2}$ does not meet Gauss's criterion.

Squaring the circle means, given α, constructing a length β so that a square of side β has the same area as a circle of radius α. This is impossible because π is not algebraic (we won't prove this).
Trisecting the angle means constructing an angle with one-third the measure of a given angle θ. If we can trisect θ, we can construct a length of $\cos (\theta / 3)$. If $\theta=\pi / 3$, then $\theta / 3=\pi / 9$ or $\beta=\cos 20^{\circ}$. One can show that, if $u=2 \beta$, then

$$
u^{3}-3 u-1=0 .
$$

This polynomial has no rational roots (it is irreducible mod 2 for example).
A pentagon is constructible because the $\cos (2 \pi / 5)$ is the root of a quadratic polynomial.
View as slides

