
5. Field Theory Basics

Basics of field theory
Things to remember from before.

We already know quite a bit about fields.

Characteristic

If F is a field, then there is a ring homomorphism Z→ F sending 1→ 1. If this
map is injective, then:

• we say F has characteristic zero
• F contains a copy of the rational numbers
• The field Q is the prime subfield of F .

Otherwise the kernel of this map must be a prime ideal pZ of Z. In this case:

• we say that F has characteristic p
• F contains a copy of Z/pZ.
• Z/pZ is the prime subfield of F .

Maps

If f : F → E is a homomorphism of fields, it is automatically injective (or zero).

The only field maps f : Q→ Q and f : Z/pZ→ Z/pZ are the identity.

Extensions

If F is a field, and F ⊂ E where E is another field, then we call E an extension
field of F .

E is automatically a vector space over F . The degree of E/F , written [E : F ],
is the dimension of E as an F -vector space.

Polynomials, quotient rings, and fields

We have the division algorithm for polynomials. F [x] is a PID. An ideal is prime
iff it is generated by an irreducible polynomial.

Let p(x) be an irreducible polynomial of degree d over F . Then:
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• K = F [x]/(p(x)) is a field
• It is of degree d over F .
• p(x) has a root in K (namely the residue class of x)
• The elements 1, x, . . . , xd−1 are a basis for K/F .

Adjoining roots of polynomials

If F ⊂ K is a field extension, and α ∈ K, then F (α) is the smallest subfield of
K containing F and α. Similarly for F (α1, α2, . . . , αn).

If p(x) is irreducible over F , and has a root α in K, then F (α) is isomorphic to
F [x]/p(x) via the map x 7→ α.

Key Theorem

Let K be a field extension of F and let p(x) be an irreducible polynomial over
F . Suppose K contains two roots α and β of p(x). Then F (α) and F (β) are
isomorphic via an isomorphism that is the identity on F .

More generally:

Theorem: (See Theorem 8, DF, page 519) Let φ : F → F ′ be an isomorphism
of fields. Let p(x) be an irreducible polynomial in F [x] and let p′(x) be the
polynomial in F ′[x] obtained by applying φ to the coefficients of p(x). Let K be
an extension of F containing a root α of p(x), and let K ′ be an extension of F ′
containing a root β of p′(x). Then there is an isomorphism σ : F (α) → F ′(β)
such that the restriction of σ to F is φ.

Algebraic Extensions
Definition

Definition: Let F ⊂ K be a field extension. An element α ∈ K is algebraic
over F if it is the root of a nonzero polynomial in F [x]. Elements that aren’t
algebraic are called transcendental.

An extension K/F is algebraic if every element of K is algebraic over F .

Basics

• If α is algebraic over F , there is unique monic polynomial mα,F (x) of
minimal degree with coefficients in F such that mα(α) = 0. (This follows
from the division algorithm). This polynomial is called the minimal
polynomial of α over F . Its degree is the degree of α.

• If F ⊂ L, then the minimal polynomial mα,L(x) ∈ L[x] of α over L divides
the minimal polynomial mα,F (x). Again, this follows from the division
algorithm for L[x].

• F (α) is isomorphic to F [x]/mα,F (x); and the degree [F (α) : F ] is the
degree of α.
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Examples

If n > 1 and p is a prime, then the polynomial xn − p is irreducible over Q, so
α = n

√
p has degree n over Q.

The polynomial x3 − x− 1 is irreducible over Q and has one real root α. So α
has degree 3 over Q but degree 1 over R.

Finite extensions are algebraic

Suppose K/F is finite and let α be an element of K. Then there is an n so that
the set 1, α, α2, . . . , αn are linearly dependent over F ; so α satisfies a polynomial
with F coefficients, and is therefore algebraic.

As a partial converse, if F (α)/F is finite if and only if α is algebraic. If α is
algebraic of degree d over F , F (α) = F [x]/(mα(x)) which is finite dimensional
(with basis 1, x, x2, . . . , xd−1.)

Algebraic over algebraic is algebraic

Proposition: If K/F is algebraic and L/K is algebraic then L/F is algebraic.

Proof: Let α be any element of L. It has a minimal polynomial f(x) =
xd + ad−1x

d−1 + · · · + a0 with the ai ∈ K. Therefore α is algebraic over
F (a0, . . . , ad−1). Since the ai are in K, they are algebraic over F , and therefore
F (a0, . . . , ad−1) is finite over F and so is F (α, a0, . . . , ad−1). Thus F (α) is
contained in a finite extension of F and so α is algebraic over F .

Field Degrees
Multiplicativity of degrees

Proposition: Suppose that L/F and K/L are extensions. Then [K : F ] = [K :
L][L : F ].

Proof: If α1, . . . , αn are a basis for L/F , and β1, . . . , βk are a basis for K/L,
then the products αiβj are a basis for K/F .

Corollary: If L/F is a subfield of K/F , then [L : F ] divides [K : F ].

Finitely generated extensions

A field K/F is finitely generated if K = F (α1, . . . , αn) for a finite set of αi in K.

Proposition: F (α, β) = F (α)(β).

Proof: F (α, β) contains F (α) and also β. Therefore F (α)(β) ⊂ F (α, β). On
the other hand, since α and β are in F (α)(β), we know that F (α, β) ⊂ F (α)(β).
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Finite is finitely generated

Proposition: A field K/F is finite if and only if it is finitely generated. If it is
generated by α1, . . . , αk then it is of degree at most n1n2 . . . nk where ni is the
degree of αi over F .

Proof: If it’s finitely generated, then it’s a sequence of extensions
F (α1, . . . , αs−1)(αs) each of degree at most ni. So K/F is finite. Con-
versely, if K/F is finite (and of degree greater than 1), choose α1 ∈ K of degree
greater than 1. Then F (α) ⊂ K and [K : F (α)] is smaller than [K : F ]. Now
choose α2 in K but not F (α1), and so on. This process must terminate.

Corollary: If α and β are algebraic over F , so are α + β, αβ, and (if β 6= 0)
α/β.

Proof: All these elements lie in F (α, β) which is finite over F .

Corollary: If K/F is a field extension, the subset of K consisting of algebraic
elements over F is a field (called the algebraic closure of F in K).

Towers of algebraic extensions are algebraic

Propositoin: If L/K is algebraic and K/F is algebraic so is L/F .

Proof: Choose α ∈ L. Then α satisfies a polynomial f(x) = xd+ad−1x
d−1+· · ·+

a0 where the ai are in K. Therefore α is algebraic over E = F (a0, a1, . . . , ad−1).
But E/F is finitely generated hence finite. Therefore [E(α) : F ] = [E(α) : E][E :
F ] is finite. Thus every element of L is algebraic over F .

Composites

If K1 and K2 are subfields of a field K, then K1K2 is the smallest subfield of K
containing these two fields. Then [K1K2 : F ] is divisible by both [K1 : F ] and
[K2 : F ] and in addition

[K1K2 : F ] ≤ [K1 : F ][K2 : F ].

In particular, if [K1 : F ] and [K2 : F ] are relatively prime, then [K1K2 : F ] =
[K1 : F ][K2 : F ].

Classical Constructions (Ruler and Compass)

Classical ruler and compass constructions allow one to:

• find the point of intersection of two lines.
• find the point of intersection of a line and a circle.
• find the points of intersection of two circles.
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Constructions

If we begin with a line segment of length 1, we can:

• construct a perpendicular, and then construct all integer lengths along
that line

• construct all points with integer coordinates in the plane
• using similar triangles, construct all points in the plane with rational

coordinates

Extensions

Now suppose we can construct all points with coordinates in a field F . Then:

• intersections of lines joining points of over F meet in points with coordinates
in F

• intersections of a line joining two points with coordinates in F with a circle
of radius in F yields points in a quadratic extension of F .

• intersections of two circles with radii in F yields points with coordinates
in a quadratic extension of F .

Gauss’s Theorem on constructibility

Theorem: If a line segment of length α is constructible by ruler and compass,
then α lies in a field obtained from Q by a sequence of quadratic extensions, and
[F (α) : F ] = 2k for some integer k ≥ 0.

Corollary: One cannot “double the cube” , trisect an angle, or square the circle.

Here doubling the cube means given a length α construct a length β so that the
cube with side length β has double the volume of the cube with side length α.
This is impossible because 3

√
2 does not meet Gauss’s criterion.

Squaring the circle means, given α, constructing a length β so that a square of
side β has the same area as a circle of radius α. This is impossible because π is
not algebraic (we won’t prove this).

Trisecting the angle means constructing an angle with one-third the measure
of a given angle θ. If we can trisect θ, we can construct a length of cos(θ/3). If
θ = π/3, then θ/3 = π/9 or β = cos 20◦. One can show that, if u = 2β, then

u3 − 3u− 1 = 0.

This polynomial has no rational roots (it is irreducible mod 2 for example).

A pentagon is constructible because the cos(2π/5) is the root of a quadratic
polynomial.

View as slides
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