
4. Canonical Forms

Canonical Forms: Preliminaries
Set-up

Let F be a field, let V be a nontrivial finite dimensional vector space over F ,
and let T : V → V be a linear transformation.

Then V is an F [x]-module.

Lemma: V is a finitely generated torsion module over F [x].

Proof: V is generated by a basis, which is finite by assumption. If V were not
torsion, there would be a v ∈ V so that the map F [x]→ V given by f(x) 7→ f(T )v
is injective; but that contradicts the fact that V is finite dimensional.

Eigenvalues and the Characteristic Polynomial.

Definition: An element λ ∈ F is an eigevanlue of T if there is a nonzero v ∈ V
with Tv = λv. The vector v is an eigenvector for this eigenvalue.

Definition: Let c(x) = det(xI − T ). Then c(x) is a monic polynomial of degree
n called the characteristic polynomial of T .

Lemma: λ is an eigenvalue of T if and only if c(λ) = 0.

Proof: If c(λ) = 0, then det(λI − T ) = 0 so λI − T has a nontrivial kernel; an
element of the kernel is an eigenvector with eigenvalue λ. Conversely, if λ is an
eigenvalue, then λI − T has nontrivial kernel, so its determinant is zero.

The Minimal polynomial

Since V is a torsion F [x] module, its annihilator

Ann(V ) = {f(x) ∈ F [x] : f(T )v = 0∀v ∈ V }

is a nonzero ideal in F [x], hence a principal ideal generated by a unique monic
polynomial m(x).

Definition: The unique monic generator m(x) of Ann(V ) is called the minimal
polynomial of T .
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Lemma: The minimal polynomial m(x) is the monic polynomial of minimal
degree such that m(T )v = 0 for all v ∈ V .

Proof: By definition m(T )v = 0 for all v ∈ V . The collection of polynomials
h(x) such that h(T )v = 0 is exactly Ann(V ), and the generator of the ideal
Ann(V ) in the Euclidean ring F [x] is its monic polynomial element of minimal
degree.

The structure of V

By the fundamental theorem of finitely generated modules over PID’s, we have
two different ways to represent V as an F [x] module.

Invariant Factors: There are monic polynomials f1(x)|f2(x)| · · · |fk(x) such
that

V = F [x]/(f1(x))⊕ F [x]/(f2(x))⊕ · · · ⊕ F [x]/(fk(x)).

Elementary Divisors: There are irreducible polynomials f1(x), . . . , fk(x) and
nonnegative integers e1, . . . , ek such that

V = F [x]/(f1(x)e1)⊕ F [x]/(f2(x)e2)⊕ · · · ⊕ F [x]/(fk(x)ek )

The invariant factors are uniquely determined; and the elementary divisors are
uniquely determined up to order.

Invariant factors and the minimal polynomial

Lemma: The minimal polynomial m(x) of T is the last (the “largest”) invariant
factor of T acting on V ; all the invariant factors divide m(x).

The Rational Normal Form
The term “canonical normal form” is also used to refer to the rational normal
form. ### The cyclic case

Let’s focus our attention for the moment on a cyclic F [x] module of the form
M = F [x]/(f(x)) where

f(x) = xd + ad−1x
d−1 + . . .+ a0

• M is a finite dimensional vector space of degree equal to the degree d of
f(x).

• 1, x, x2, . . . , xd−1 is a basis for this module.
• x is an F -linear transformation M →M .

2



Matrix of x

The linear map [x] given by multiplication by x has the following matrix form
in the basis 1, x, x2, . . . , xd−1:

[x] =


0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

... . . . ...
...

0 0 · · · 1 −ad−1


Definition: The matrix for [x] above is called the companion matrix for the
polynomial f(x).

Characteristic and minimal polynomials of the companion matrix

Lemma: The characteristic and minimal polynomials of this linear transforma-
tion are both f(x).

Proof: The fact that the characteristic polynomial of [x] is f(x) is a computation.
The fact that f(x) is the minimal polynomial follows from the fact that x clearly
satisfies f(x), and, since 1, x, . . . , xd−1 are linearly independent, there is no
relation

∑
aix

i = 0 of degree less than d.

The general case

If M is a finitely generated torsion F [x] module, then it is a direct sum of cyclic
modules:

M = F [x]/(f1(x))⊕ · · · ⊕ F [x]/(fk(x))

where f1(x)|f2(x)| · · · |fk(x).

Each of the factor modules has a basis consisting of powers of x; so M has a
basis obtained by stringing together the powers of x corresponding to each factor.
Therefore the basis of the linear map [x] is made up of blocks, where each block
is the companion matrix for the polynomial fi(x) for i = 1, . . . , k.

The rational normal form of a matrix

Now let V be a finite dimensional vector space over F and T : V → V be a
linear map. Viewing V as a finitely generated torsion F [x] module, we can find
a basis for V so that the matrix of T is in block form, where each block is the
companion matrix to a monic polynomial fi(x), and where f1(x)| · · · |fk(x).

This is called the rational normal form or rational canonical form for the linear
map T .
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• The polynomials that occur in the companion matrices are unique.
• Every matrix is conjugate to a unique matrix in rational normal form.

The minimal and characteristic polynomials

Proposition: If T is in rational normal form, then the minimal polynomial of
T is the “last” polynomial fk(x) and the characteristic polynomial is the product
f1(x) · · · fk(x).

Proof: The result about the minimal polynomial follows because fk(x) is
zero but x cannot satisfy a lower degree polynomial because 1, x, . . . , xd−1 are
linearly independent in the “last” factor. The result about the characteristic
polynomial follows because the determinant of a block matrix is the product of
the determinant of the blocks.

Corollary: (The Cayley-Hamilton Theorem) The minimal polynomial of T
divides its characteristic polynomial, and the characteristic polynomial divides
some power of the minimal polynomial. In particular they have the same roots.
T satisfies its characteristic polynomial.

Fields and subfields

If A is a matrix in Mn(F ), and F ⊂ K is a subfield of K, then the rational
normal form of A is the same whether computed over F or K. This is because if
f1| · · · |fk are the invariant factors of the module obtained from A over F , they
satisfy the uniqueness properties over K as well.

If A and B are similar over K, then they are similar over F ; because they have
the same rational normal form over K, and therefore also over F .

Jordan normal form
Elementary divisors version

The rational normal form comes from the invariant factor version of the fun-
damental theorem, while the Jordan normal form comes from the elementary
divisors version. In other words, we write our module

M = ⊕F [x]/(f1(x)e1)⊕ F [x]/(f2(x)e2)⊕ · · · ⊕ F [x]/(fk(x)ek )

where the fi(x) are all monic irreducible polynomials. This decomposition is
unique up to reordering of the factors.

Characteristic and minimal polynomials

Lemma: The characteristic polynomial of [x] is the product of the fei
i and the

minimal polynomial is the least common multiple of the fei
i .

Proof: In this version, one can use the powers of x in each factor and find a block
diagonal representation of the linear map [x]; each block is the companion matrix
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of fei
i and so the characteristic polynomial is the product of the elementary

divisors. The minimal polynomial is the polynomial of smallest degree divisible
by all of the fei

i which is their least common multiple.

Jordan normal form

We assume that the roots of the characteristic/minimal polynomial of T all belong
to the field F . In this case, the fi are all of degree one and

M = ⊕F [x]/((x− λ1)e1)⊕ · · · ⊕ F [x]/((x− λk)ek )

where the λi include all of the eigenvalues of T , although they aren’t necessarily
distinct. The action of [x] breaks up into blocks according to how x acts on each
factor.

Jordan normal form continued

We take one of the factors F [x]/((x−λ)e) and use vi = (x−λ)i for i = 0, . . . , e−1
as our basis. Then

xvi = x(x− λ)i = (x− λ)i+1 + λ(x− λ)i

remembering that (x− λ)e = 0.

Jordan normal form continued

The matrix of [x] in this basis looks like:

[x] =


λ 1 0 · · · 0
0 λ 1 · · · 0
...

...
... . . . ...

0 0 0 · · · λ 1
0 0 0 · · · 0 λ


This is called a Jordan Block and every linear map has a basis in which it is
built out of Jordan blocks on the diagonal. Similarly every matrix is conjugate
to a matrix in Jordan block form, assuming its eigenvalues lie in the field F .

Uniqueness of Jordan block

The invariants of the Jordan block form are the eigenvalues λ and the sizes of
the blocks e. The form is unique up to rearrangement of these blocks.
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Diagonalizability

A matrix A is diagonalizable over a field F if and only if its minimal polynomial
has no repeated roots.

View as slides
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