8. Galois Theory Examples and Applications

Examples and Applications

The "general polynomial"

The polynomial $F_{n}(T)=\left(T-x_{1}\right) \cdots\left(T-x_{n}\right)$, where the x_{i} are indeterminants, is called the general polynomial of degree n. The group S_{n} permutes the x_{i} and acts as automorphisms of the field $E\left(x_{1}, \ldots, x_{n}\right)$ where E is any field.

The coefficients of $F_{n}(T)$ are, up to sign, the elementary symmetric functions s_{i} of the roots x_{i}. Therefore the field $E\left(s_{1}, \ldots, s_{n}\right)$ is contained in the fixed field of S_{n} on $E\left(x_{1}, \ldots, x_{n}\right)$. Therefore $\left[E\left(x_{1}, \ldots, x_{n}\right): E\left(s_{1}, \ldots, s_{n}\right)\right] \geq n!$.

On the other hand, $E\left(x_{1}, \ldots, x_{n}\right)$ is the splitting field of $F_{n}(T)$ over $E\left(s_{1}, \ldots, s_{n}\right)$. Therefore $\left[E\left(x_{1}, \ldots, x_{n}\right): E\left(s_{1}, \ldots, s_{n}\right)\right] \leq n!$.
Thus the galois group of this extension is S_{n}.
In particular any symmetric function in the roots of a polynomial can be written in terms of the coefficients of the polynomial.

The discriminant

The discriminant of a polynomial is the product of the differences of its distinct roots squared:

$$
\Delta=\prod_{i<j}\left(x_{i}-x_{j}\right)^{2}
$$

It is a symmetric function of the roots.
If Δ is a square, then the galois group of the polynomial is contained in the alternating group.

Solvability by radicals

A radical extension K / F is a field extension that can be constructed by a succession of simple radical extensions where $K_{i+1}=K_{i}\left(\alpha_{i+1}\right)$ where $\alpha_{i+1}^{n_{i+1}} \in K_{i}$.

Notice that any field extension generated by roots of unity is a radical extension.

Theorem (Kummer): Suppose that F is a field containing the $n^{\text {th }}$ roots of unity where the characteristic of F does not divide n. Then K / F is a cylic galois extension (i.e. has cyclic galois group) of degree n if and only if $K=F(\alpha)$ where $\alpha^{n} \in F$.

Solvability by radicals

A polynomial is "solvable by radicals" (meaning its roots like in a radical extension) if and only if the Galois group is solvable.
The polynomial $x^{5}-6 x+3$ has Galois group S_{5}.

