7. Galois Extensions

Galois Extensions

Automorphisms

Let K/F be an extension fields and let Aut(K/F) be the group of field homomorphisms $\sigma : K \to K$ which are the identity when restricted to F.

Some basics:

- If α ∈ K is algebraic over F with minimal polynomial p(x) over F, then σ(α) is also a root of p(x).
- ▶ If $H \subset Aut(K/F)$ is a subgroup, then the set $K^H = \{x \in K : \sigma(x) = x \forall \sigma \in H\}$ is a subfield of K.
- If $H_1 \subset H_2$ are subgroups of Aut(K/F), then $K^{H_2} \subset K^{H_1}$.

Galois Extensions

Proposition: Let E/F be the splitting field over F of some polynomial $f(x) \in F[x]$. Then

$$|\operatorname{Aut}(E/F)| \leq [E:F].$$

If f(x) is separable, then this is an equality.

Definition: E/F is called a Galois extension if $|\operatorname{Aut}(E/F)| = [E : F]$. In this case the automorphism group is called the *Galois group* of the extension.

Proposition 5 says that separable splitting fields are Galois extensions.

The Galois correspondence

Let E/F be a Galois extension with Galois group G. Then there is a bijective (inclusion reversing) correspondence between:

- subfields L of E containing F
- subgroups of G

The correspondence is given by $H \to E^H$ for $H \subset G$ in one direction, and $L \to \operatorname{Aut}(E/L) \subset G$ in the other direction.

Further:

- If $L = E^H$ then E/L is Galois with group H.
- If $L = E^H$ then [E : L] = |H| so E is Galois over L.
- If L is a subfield of E containing F, then |Aut(E/L)| = [E : L] so E is Galois over L.
- ▶ The fixed field $L = E^H$ is Galois over F if and only if H is a normal subgroup of G, and in that case Aut(L/F) = G/H.

Some examples

- Quadratic extensions
- $\blacktriangleright \mathbb{Q}(\sqrt{2},\sqrt{3}).$
- The splitting field of $x^3 2$ over \mathbb{Q} .
- The splitting field of $x^4 2$ over \mathbb{Q} .
- The field $\mathbb{Q}(\zeta_p)$ where ζ_p is a p^{th} root of unity.
- The fields of eigth and ninth roots of unity.
- Finite fields.

Overview of the proof

There are two "directions" we need to consider.

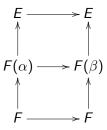
- 1. Suppose E/F is a separable splitting field extension. Then |Aut(E/F)| = [E : F].
- 2. Suppose *E* is a field and *G* is a finite group of automorphisms of *E*. Then the fixed field E^G satisfies $[E : E^G] = |G|$ and E/E^G is a separable splitting field.

These mean together that:

- ▶ if we start with a separable extension E/F, compute its automorphism group Aut(E/F), and then take the fixed field in E of that group, we get a subfield of E that contains F and has [E : E^{Aut(E/F)}] = [E : F], so E^{Aut(E/F)} = F.
- If we start with a field E and a group of automorphisms G, then E/E^G is a separable splitting field extension so Aut(E/E^G) has order [E : E^G] = |G|. Since G is contained in Aut(E/E^G), this means Aut(E/E^G) = G.

This is the prototype of the Galois correspondence.

The first assertion to consider is that, if E/F is a separable splitting field, then $|\operatorname{Aut}(E/F)| = [E:F]$. This is a consequence of the theorem on extension of automorphisms. The proof is by induction. Clearly if E = F then $\operatorname{Aut}(E/F)$ is trivial and [E:F] = 1. Now suppose we know the result for all separable splitting fields of degree less than n and suppose E/F has degree n. Choose an element $\alpha \in E$ of degree greater than one over F and let f(x) be its minimal polynomial. Let β be any other root of f(x). Since E/F is a splitting field, $\beta \in E$. Consider the diagram:



Now we want to show that, if G is a group of automorphisms of a field E, then E/E^G is a separable splitting field of degree |G|. The key tool here is a result known as *linear independence of characters*.

Lemma: Let G be a group, let L be a field, and let $\sigma_1, \ldots, \sigma_n$ be distinct homomorphisms $G \to L^{\times}$. Then the σ_i are linearly independent over L, meaning that if $f = \sum_{i=1}^n a_i \sigma_i$ is the zero map for some collection of $a_i \in L$, then all a_i are zero.

Proof: Suppose that the σ_i are dependent. Choose a linear relation of minimal length where all the coefficients are nonzero:

$$f=\sum a_i\sigma_i=0$$

Let $h \in G$ such that $\sigma_1(h)$ and $\sigma_n(h)$ are different. Now f(g) = 0 for all $g \in G$, and also f(hg) = 0 for all $g \in G$ since it's the same set of elements. Therefore

$$1 \sum (1)$$

Now we want to prove that $[E : E^G] = |G|$. Let's use $F = E^G$ to simplify the notation. Choose a basis $\alpha_1, \ldots, \alpha_n$ for E/F and let $\sigma_1, \ldots, \sigma_m$ be the elements of G. Form $m \times n$ the matrix

$$S = \begin{pmatrix} \sigma_1(\alpha_1) & \sigma_1(\alpha_2) & \cdots & \sigma_1(\alpha_n) \\ \sigma_2(\alpha_1) & \sigma_2(\alpha_2) & \cdots & \sigma_2(\alpha_n) \\ \vdots & \vdots & \vdots & \vdots \\ \sigma_m(\alpha_1) & \sigma_m(\alpha_2) & \cdots & \sigma_m(\alpha_n) \end{pmatrix}$$

Let's first look at the row rank of this matrix. Suppose that

$$[\beta_1\cdots\beta_m]S=0.$$

It follows that $\sum_{i=1}^{m} \beta_i \sigma_i(\alpha_j) = 0$ for all α_j , and, since the α_j span E/F, we condlue $\sum_{i=1}^{m} \beta_i \sigma_i(x) = 0$ for all $x \in E$. By linear independence this means that all $\beta_i = 0$ and so the row rank of S is m.

We finally need to verify that E/E^G is a separable splitting field. First, let $\alpha \in E$ be any element of E with minimal polynomial q(x). Consider the orbit $\{\alpha_1, \ldots, \alpha_k\}$ of α under the action of G. The polynomial

$$p(x) = \prod_{i=1}^{k} (x - \alpha_i)$$

is fixed by G so has coefficients in E^G ; it also has α as a root so q(x) divides p(x). Therefore all roots of q(x) belong to E. Since every polynomial with coefficients in E^G that has a root in E splits in E, E is a splitting field over E^G .

To show separability, let β_1, \ldots, β_n be a basis for E/E^G . Let $p_i(x)$ be the minimal polynomial of β_i over E^G . We've shown already that each $p_i(x)$ splits completely in E. Consider the product f(x) of all the p_i and let $f_1(x)$ be its square free part (that is, the product of its irreducible factors, all to the first power). Then $f_1(x)$ is

See the proof in Dummit and Foote, which basically applies our numerical result that $[E : E^G] = |G|$, the fact that E/E^G is a separable splitting field, and our existence theorem that, if E/F is a separable splitting field, then $|\operatorname{Aut}(E/F)| = [E : F]j$ to obtain the correspondence.