
Comments on HW Set 2
Problem 2.

We have a group G and a normal subgroup H. Suppose that K is a conjugacy
class in G. If K∩H is non empty, choose x ∈ K∩H. Then gxg−1 ∈ gHg−1 = H
for all g ∈ G, and therefore K ⊂ H. Therefore if H contains any element of a
G-conjugacy class, it contains the entire G-conjugacy class.

Choose K ⊂ H. The conjugation action of H on K preserves K because if two
things are H-conjugate then they are G-conjugate. So K breaks up into H-orbits
under conjugation.

If x ∈ K, then the size of the H-orbit of x is [H : CH(x)] by the Orbit-Stabilizer
theorem. Also, CH(x) = H ∩ CG(x), since if an element of H commutes with x
then it is certainly in GG(x).

Let x′ = gxg−1 is a representative of a different H-orbit in K. If h ∈ CH(x),
then a calculation shows that ghg−1 is in CH(x′). Since conjugation is bijective
this shows that CH(x′) = gCH(x)g−1. In particular these groups have the same
order and so all of the H-orbits in K have the same size [H : CH(x)]. It follows
that the number of such orbits is

k = [G : CG(x)]/[H : CH(x)].

The isomorphism theorems say that

[H : CH(x)] = [H : H ∩ CG(x)] = [HCG(x) : CG(x)]

and then

k = [G : CG(x)]/[HCG(x) : CG(x)] = [G : HCG(x)].

Alternatively, let H be an H-orbit inside K with representative x. If H′ is
another such orbit, with representative x′ = gxg−1, then one can show that
conjugation by g gives a bijection between H and H′. Therefore G permutes
the H-classes transitively. By the generalized version of the Orbit-Stabilizer
theorem (Proposition 6) one gets that the number of orbits is [G : NG(H)]. But
g stabilizes H provided that gxg−1 = hxh−1 for some h ∈ H. This means that
h−1g is in CG(x) or g ∈ HCG(x). Conversely, if g ∈ HCG(x), then g = hz and
gxg−1 = hzxz−1h−1 = hxh−1 so g ∈ NG(H). Therefore NG(H) = HCG(x) and
the orbit stabilizer theorem gives

k = [G : HCG(x)].
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Problem 4. I’ve already explained the counting part of this problem, so we
know that if σ : Sn → Sn is an automorphism, and n is not 6, then σ carries
transpositions to transpositions.

The trickiest part of this problem is to prove that if σ : Sn → Sn is an automor-
phism, then σ((1j)) = (abj) where the bj are distinct.

I think a proper proof of this needs an inductive argument. Assume σ is an
automorphism that carries transpositions to transpositions. (This is forced unless
n = 6 but we can assume it for this problem in general.) Suppose that n = 3. In
this case there are only three transpositions, and σ((12)) and σ((13)) have to
be different. But any two distinct transpositions in S3 overlap in one place, so
we get what we want. Now suppose that n = 4. Suppose that σ((12)) = (ab2).
If σ((13)) were disjoint from (ab2), then it would commute with (ab2). But
(12) and (13) do not commute, and σ is a homomorphism, so σ((13)) must
overlap with σ((12)); we can assume that σ((13)) = (ab3). Now σ((14)) does
not commute with either (12) or (13) so it must overlap with both (ab2) and
(ab3). At first glance we could have σ((14)) = (ab4) OR σ((14)) = (b2b3). But
notice that (12)(13)(12) = (23) so σ((23)) = (b2b3). Since σ is bijective, the only
possibility is that σ((14)) = (ab4).

Now assume that n ≥ 5 and we know that, for 2 ≤ j ≤ n, we must have
σ((1j)) = (abj) for some 1 ≤ a ≤ n and distinct bj in that range. What about
σ((1, n+ 1))? It must overlap with each of (abj) for j = 1, . . . , n. If it doesn’t
have an “a”, then it must be of the form (bjbk). But then there is a third index
s in the range and (bjbk) does not overlap with (abs). So σ((1n+ 1)) must be of
the form (abn+1) where bn+1) is distinct from all of the previous bj .

This completes the inductive argument.

There is one other comment about this problem. At the end, one shows that
there are at most n! automorphisms of Sn (except when n = 6). Then one argues
that the inner automorphism group of Sn is Sn which has n! elements, so all
automorphisms must be inner.

In general, Inn(G) is isomorphic to G/Z(G), since elements of the center of G
give trivial inner automorphisms. Thus, to conclude that Inn(G) = Sn, you need
to use the fact that the center Z(Sn) is trivial. This result can be found in DF.
A truly complete proof needs to mention this fact.

Problem 5. The most common mistake in this problem came in the proof that
H and K commute. The Sylow theorems tell you that H is normal, but it isn’t
necessarily the case from Sylow that K is normal. You can show that HK = G
and also that HK = KH using the normality of H, but this does not mean that
G is abelian. Even the fact that the orders of H and K are relatively prime isn’t
enough. For example, S3 has a normal subgroup H of order 3, and a non-normal
Sylow 2-subgroup K of order 2, and HK = KH = S3, but S3 is not abelian. To
prove the group in the homework problem is abelian, you need to consider the
fact that K acts by conjugation on H so there is a map K → Aut(H). Since you
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know H is cyclic of order 187, it’s automorphism group has order φ(187) = 160.
But K has order 9, and since 160 is not divisible by 3 the only map from K to
Aut(H) is trivial. Therefore elements of K commute with elements of H and
from that you see that G is abelian.

If, in the argument above, you knew that K was a normal subgroup, then you
could argue that the commutator subgroup of H and K is a subgroup of H ∩K,
therefore trivial, and so the group is abelian; but you don’t know just from Sylow
that K is normal.
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