Sylow III
Theorem: Let G be a finite group and p a prime dividing the order of G. Let n_{p} be the number of Sylow p-subgroups in G. Then n_{p} is
a divisor of $|G|$ and $n_{p} \equiv 1(\bmod p)$.
Proof:
(1) n_{p} is a dirisu of $|G|$,

By Sylow II, all sylow p-subys are conjugate.
Pick ore: 1 .

$$
x=\left\{g \rho_{S^{-1}}: g \in G\right\}=\left\{\begin{array}{c}
\text { all } c_{y} \text { low } \\
p-s u p y p s
\end{array}\right\} .
$$

\# els in $\left\{g g^{-1}: g \in G\right\}$

$$
=[G: N(P)]| | G \mid \text {. }
$$

St $n_{2}=3$

$$
3 \mid 24, \quad 3 \equiv 1 \bmod 2
$$

SM n_{3}
duisus of 24
(1) $2,3,(4) 6,8,12,24$

83 cycles
4 sylow 3-subyps

$$
\begin{aligned}
& \text { in } 5 y \text { of } 8 \\
& \text { exch hus } 2 \text { of } \\
& 3 \text { cycles. }
\end{aligned}
$$

(2) $X=\left\{p_{1}, p_{1, \ldots} P_{n_{p}}\right\}$
let $P=P$ act on X by con jagsio
P_{1} fores itself man conjugathi

$$
\begin{aligned}
& P_{1} \text { fixes itself man comjogare } \\
& P_{1} \text { fixed } P_{i} \Rightarrow P_{1} \subseteq N\left(P_{i}\right) \Rightarrow P_{1}=P_{i} \\
& P_{1} \text { is not fixed by } P_{1}
\end{aligned}
$$

$P_{i} \neq P_{1} \Rightarrow P_{i}$ is not fixed by P_{1}

$$
X=\left\{P_{1}\right\} \cup X_{1} \cup \ldots X_{r}
$$

$X_{i}=$ orbit of sure P_{i}.

$$
n_{p}=|X|=1+\sum_{\operatorname{mol}+p \cos \text { of } p} 1
$$

$$
\left|X_{i}\right|=\left[\frac{p}{G}: \underline{\left.P \cap N\left(P_{i}\right)\right]}\right.
$$

$$
n_{p} \equiv 1 \bmod p
$$

$$
=a p \text { oven of } p
$$

