The Second Sylow Theorem

Definition: Let GG be a finite group and let p” be the largest power
of p that divides the order of G. Then a subgroup of GG of order p" is

called a Sylow p-subgroup of G. [6= =%y, l61=2Y, 3 [z\\-&
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Sylow’s first theorem says that Sylow p-subgroups always Texist. Sy-

o ®
low’s second theorem says they are all related to each other by

conjugation.

Theorem: (Sylow II) Let P1 and P be Sylow p—subgroups of a
finite group G. Then there is a g€ G50 that, gP1 g = P2 In other
words, all Sylow p-subgroups are conjugate to each other
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An example

Example: Let G = Sy, a group of order 24. A Sylow 2-subgroup
of G has order 8. One such subgroup consists of the 4-clement cyclic
subgroup generated by the four cycle R = (1234) and a transposition
’iili%); These permutations generated a copy of the Dihedral group
Dy, with elements:

e, (1234), (13)(24), (1432), (13), (24), (14)(23), (12)(34).
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However, there are others:

e, (1324), (12)(34), (1423), (12), (34), (13)(24), (14)(23).
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and

e, (1243), (14)(23), (1342), (13)(24), (14)(23), (14), (23)
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Each of these 3 subgroups Hy, Hy, H3 is a copy of Dy, corresponding
to different ways of labelling the vertices of the square.

« The first example labels the vertices (going around the square)
1,2, 3,4 (so that the diagonals connect 1,3 and 2,4).
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/ « The second labels them 1,3, 2,4 (so that the diagonals connect

( 1,2 and 3,4) 3 .
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« The third labels them 1,2, 4,3 (so tflat the diagonals connect
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Notice that (12)H;(12) = Hs and (14)H;(14) = Hy. So all of
these Sylow 2-subgroups are conjugate to one another.




Key definitions and lemmas

The orbit of a subgroup H under the conjugation action of GG is the
set of subgroups {gPg~': g € G}.
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From our study of group actions, we know that this orbit is in bijection
with the cosets of the stabilizer G of H under this action.
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Definition: The subgroup Gy = {ge G:gHg ! = H} is called
the normalizer N(H) of H in G.

Lemma: N(H) has these properties:

« H is a normal subgroup of N(H)
« if K is any subgroup of G containing H as a normal subgroup, <£K
then K C N(H).

Proof: & WcN (W) WU = | J<\_ I ké‘g/__
H s woemae i NCH\ OINZE\_‘
CXQ NEY 2 SHS\ - K '

T\\ ,\)L\ < %L\ W\'\\C\'\ ) oo st\ow 2 __g\)\n g{\od\g

)

NIDY) ~Vy
corpte 4 DO iG"N%ﬂ
2 Cm1v3L</> N(\}\(\&G haa wactand 3
D EYBOE €

3



Lemma: If P is a Sylow p-subgroup, then N (P) has some additional
properties:

 The index [N(P) : P] is not divisible by p.
« Any element of N(P) of prime power order belongs to P.
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The proof

Proof of Sylow II: Let P = P} be a Sylow p-subgroup of G and
let X = Me its conjugates under the action of G.
Our goal is to show that, if Q is any Sylow p-subgroup of G, then
¢ = PFsforsomes=1,... k.

1. The number % of conjugates of P is [G' : N(P)] which is not a
multiple of p.
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3. X is divided up into orbits for the action of (). Each orbit has
[Q Q N N(F;)] elements for some i =1,... k. So

k=3[Q: QN N(P)
s=1 (Q

where P, for s = 1,...,r, are representatives for the different
orbits of ()
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4. Each number [@ : @ N N(P)] is a power of p, but k is not

divisible by p. So in the sum for k, at least one of the terms
[Q : QN N(P,)] is equal to one (which is p"). In other words
Q) C N(PFs) for some s.
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5. Since every element of () has order a power of p, this means
every element of () is in P;. In other words () C P;. Since they
have the same order, they are equal.
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Corollary: Let_H be any subgroup of G of prime power order.
Then H is contained in a Sylow p-subgroup of (.

Proof: Repeat the above argument for H; at the end you conclude
that H C P, for some s.



