The Second Sylow Theorem

Definition: Let G be a finite group and let p^r be the largest power of p that divides the order of G. Then a subgroup of G of order p^r is called a Sylow p-subgroup of G. Sylow's first theorem says that Sylow p-subgroups always exist. Sylow's second theorem says they are all related to each other by conjugation.

Theorem: (Sylow II) Let P_1 and P_2 be Sylow *p*-subgroups of a finite group G. Then there is a $g \in G$ so that $gP_1g^{-1} = P_2$. In other words, all Sylow *p*-subgroups are conjugate to each other.

An example

Example: Let $G = S_4$, a group of order 24. A Sylow 2-subgroup of G has order 8. One such subgroup consists of the 4-element cyclic subgroup generated by the four cycle $\underline{R} = (1234)$ and a transposition s = (13). These permutations generated a copy of the Dihedral group D_4 , with elements:

However, there are others:

 $e, (1324), (12)(34), (1423), (\underline{12}), (34), (13)(24), (14)(23).$

and

e, (1243), (14)(23), (1342), (13)(24), (14)(23), (14), (23)

Each of these 3 subgroups H_1 , H_2 , H_3 is a copy of D_4 , corresponding to different ways of labelling the vertices of the square.

• The first example labels the vertices (going around the square) 1, 2, 3, 4 (so that the diagonals connect 1, 3 and 2, 4).

Notice that $(12)H_1(12) = H_3$ and $(14)H_1(14) = H_2$. So all of these Sylow 2-subgroups are conjugate to one another.

Key definitions and lemmas

The orbit of a subgroup H under the conjugation action of G is the set of subgroups $\{g \not P g^{-1} : g \in G\}$. $H \subseteq G$ G orbit of $\{g \not P g^{-1} : g \in G\}$. $H \subseteq G$ G orbit of $\{g \not P g^{-1} \mid g \in G\}$ $H \subseteq G$ G orbit of $\{g \not P g^{-1} \mid g \in G\}$.

From our study of group actions, we know that this orbit is in bijection with the cosets of the stabilizer G_H of H under this action.

Orbit is in bijechn with cosets
$$G/G_H$$

 $G_H = Stebilizer of H under conjught.$

But

$$G_H = \{g \in G : \underline{gHg^{-1}} = H\}.$$

Definition: The subgroup $G_H = \{g \in G : gHg^{-1} = H\}$ is called the <u>normalizer N(H) of H in G.</u>

Lemma: N(H) has these properties:

- H is a normal subgroup of N(H)
- if K is any subgroup of G containing H as a normal subgroup, \checkmark then $K \subset N(H)$.

Proof: • $H \le N(H)$ $hHI^{-1} = H f_{n} all he H.$ <math>H is normal in N(H) $g \in N(H) \Rightarrow gHg^{-1} = H.$ H $In D_{q} \le S_{q}$ which is a Sylow 2-subgroup $N(D_{q}) = D_{q}.$ Conjugates of $D_{q} \simeq [G: N(D_{q})]$ J and J a **Lemma:** If P is a Sylow p-subgroup, then N(P) has some additional properties:

- The index [N(P) : P] is not divisible by p.
- Any element of N(P) of prime power order belongs to P.

Proof:

$$|G| = p^{fm} \quad p^{fm}.$$

$$|P| = p^{f}$$

$$[G: P] = m \quad p^{fm}.$$

$$P \leq N(P) \leq G$$

$$[G: N(P)][N(P): P] = m.$$

$$[fm]$$

$$I \int q \in N(P) \quad and ib of order p^{S} \quad Hen \quad g \in P.$$

$$(P = a \leq b \circ e \in b \circ e < b \circ < b \circ e < b \circ < b \circ$$

The proof

Proof of Sylow II: Let $P = P_1$ be a Sylow *p*-subgroup of *G* and let $X = \{P_1, P_2, \ldots, P_k\}$ be its conjugates under the action of *G*. Our goal is to show that, if *Q* is any Sylow *p*-subgroup of *G*, then $Q = P_s$ for some $s = 1, \ldots, k$.

- 1. The number k of conjugates of \underline{P} is $[\underline{G:N(P)}]$ which is not a multiple of p. N $(\underline{P}) = \underline{G}_{p}$
- $\begin{bmatrix} G: \mathcal{V}(P) \end{bmatrix} \begin{bmatrix} \mathcal{V}(P): P \end{bmatrix} \quad |G| = p^{n} \\ \hline G: P \end{bmatrix} = m \quad \text{gtm} |P| = p^{n} \\ 2. \text{ Let } Q \text{ be any Sylow } p\text{-subgroup and consider the action of } Q \\ \text{ on the set } X. \\ Because \quad Q \subseteq G, \quad Q^{P}, Q^{P} = P; \quad i = 1, \dots, k \\ Because \quad Q \subseteq G, \quad Q^{P}, Q^{P} = P; \quad i = 1, \dots, k \\ fn \quad \text{all } q \in Q. \\ X \text{ has } Q \text{-occh.} \end{bmatrix}$
- 3. X is divided up into orbits for the action of Q. Each orbit has $[Q: Q \cap N(P_i)]$ elements for some i = 1, ..., k. So

$$\underline{k} = \sum_{s=1}^{r} [Q : Q \cap N(P_s)]$$

where P_s , for s = 1, ..., r, are representatives for the different orbits of Q.

4. Each number $[Q : Q \cap N(P_i)]$ is a power of p, but k is not divisible by p. So in the sum for k, at least one of the terms $[Q : Q \cap N(P_s)]$ is equal to one (which is p^0). In other words $Q \subset N(P_s)$ for some s.

$$K = \sum_{i=1}^{s} \sum_{i=1}^{s} \frac{Q:QN(P_i)}{r}$$

$$T leve \quad Fr \quad an \ i \quad with$$

$$\left[Q:QN(P_i)\right] = 1,$$

$$QNN(P_i) = Q$$

$$Q \leq N(P_i) = i$$

5. Since every element of Q has order a power of p, this means every element of Q is in P_s . In other words $Q \subset P_s$. Since they have the same order, they are equal.

G
$$\leq N(P_{s})$$

every ett of Q has p-power order.
Q $\leq P_{s}$.
T 1
both have order p^{r} .
So $Q = P_{s}$.

Corollary: Let \underline{H} be any subgroup of \underline{G} of prime power order. Then H is contained in a Sylow *p*-subgroup of \underline{G} .

Proof: Repeat the above argument for H; at the end you conclude that $H \subset P_s$ for some s.