Proof of Cauchy’s Theorem (\,;\w,

Theorem: Let G be a finite group of order n. If p/\n, then GG has a
subgroup of order p.

Remark: We have already proved this for abelian groups.

Proof: We will use induction on n and the class equation which

says that
k
Gl =1Z(G)|+ X[G : C(x)]
- = e—
where x1, ..., x) are representatives for the distinct conjugacy classes

of size greater than 1.
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If the index [G : C(x;)] is not divisible by p, then the order of
the group C(x;) must be divisible by p. Since C'(x;) is smaller, by
induction it contains a subgroup of order p which in turn is a subgroup

of G of order p.
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Therefore all of the indices are divisible by p. However, in that case
|Z(G)| must be divisible by p as well.
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Since Z((G) is abelian and of order divisible by p, it contains a
subgroup of order p.
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p-groups
Corollary: Let p be a prime. The two conditions:

¢\ + The order of (G is a_power of p E
b) « Every element of G has order that is a power of p

are equivalent.
Groups satisfying (either of) these conditions are called p-groups.
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Proof of Sylow’s First Theorem

Theorem: Let G be a finite group of order n. If p” divides n, then
GG has a subgroup of order p”.

Proof: As in the proof of Cauchy’s theorem consider the class
equation

Gl = 1Z(G)| + ¥[6 : Cla)].

and use induction on n. Assume r > 1, otherwise we are done by
Cauchy’s theorem.
- l G| 5 t>0.
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If any of the [G : C(x;)] are not divisible by p, then C(x;) is divisible
by p" and by induction contains a subgroup with p” elements.
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If all of the [G : C(x;)] are divisible by p, so is | Z(G)| so Z(G) has a
subgroup H of order p. 3
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This subgroup is necessarily normal since it consists of elements that

commute with all of G. [y ¢ 2(6 ) =) SH ~ H
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The group GG/H has order n/p. This is still a multiple of p by the
assumption 7 > 1 and so G/ H has a subgroup of order p"~!. Let K
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The inverse image of K under the canonical homomorphism G —

G/gisasulﬁr/oup of G of order p". < C G/(—\
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