
Proof of Cauchy’s Theorem
Theorem: Let G be a finite group of order n. If p|n, then G has a

subgroup of order p.

Remark: We have already proved this for abelian groups.

Proof: We will use induction on n and the class equation which

says that

|G| = |Z(G)| +
kÿ

i=1
[G : C(xi)]

where x1, . . . , xk are representatives for the distinct conjugacy classes

of size greater than 1.
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If the index [G : C(xi)] is not divisible by p, then the order of

the group C(xi) must be divisible by p. Since C(xi) is smaller, by

induction it contains a subgroup of order p which in turn is a subgroup

of G of order p.

Therefore all of the indices are divisible by p. However, in that case

|Z(G)| must be divisible by p as well.

Since Z(G) is abelian and of order divisible by p, it contains a

subgroup of order p.
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p-groups
Corollary: Let p be a prime. The two conditions:

• The order of G is a power of p

• Every element of G has order that is a power of p

are equivalent.

Groups satisfying (either of) these conditions are called p-groups.
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Proof of Sylow’s First Theorem
Theorem: Let G be a finite group of order n. If p

r
divides n, then

G has a subgroup of order p
r
.

Proof: As in the proof of Cauchy’s theorem consider the class

equation

|G| = |Z(G)| +
kÿ

i=1
[G : C(xi)].

and use induction on n. Assume r > 1, otherwise we are done by

Cauchy’s theorem.

If any of the [G : C(xi)] are not divisible by p, then C(xi) is divisible

by p
r

and by induction contains a subgroup with p
r

elements.
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If all of the [G : C(xi)] are divisible by p, so is |Z(G)| so Z(G) has a

subgroup H of order p.

This subgroup is necessarily normal since it consists of elements that

commute with all of G.

The group G/H has order n/p. This is still a multiple of p by the

assumption r > 1 and so G/H has a subgroup of order p
r≠1

. Let K

be this subgroup.

The inverse image of K under the canonical homomorphism G æ
G/H is a subgroup of G of order p

r
.
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