Burnside's Theorem
Theorem: Let G be a finite group acting on a set ${ }^{c} X$ and let k be the number of orbits of X. Then

$$
k=\frac{1}{|G|} \sum_{g \in G}\left|X_{g}\right|
$$

where $X_{g}=\{x: g x=x\}$ is the fixed point set of g.
Proof:

$$
\begin{aligned}
& \text { f: } G \times x \\
& Z \subseteq G \times x \\
& Z=\left\{\left(g_{2} x\right) \mid g x=x\right\}
\end{aligned}
$$

Columns
Fix $g \in G$.
Rows

How many pairs $(g, x) \in Z$ $(g, x) \in z$ means $g x=x$
x is a freed pt fur $y \in G$.

$$
F x x \in X
$$

How many $\left(g_{v} x\right) \in Z$ $g_{T}^{x}=x$
$g \in G_{x}$.

$$
|z|=\sum_{g \in G}\left|X_{g}\right|
$$

$$
|z|=\sum_{x \in X}\left|G_{x}\right|
$$

$$
\sum_{g \in G}\left|X_{g}\right|=\sum_{x \in X}\left|G_{x}\right|
$$

$$
\begin{aligned}
& \sum_{x \in X}\left|G_{x}\right|=\sum_{x \in X} \frac{|G|}{\left[G: G_{x}\right]}=|G| \sum_{x \in X}\left[G_{\left[G: G_{x}\right]} \mid G_{x}\right]=\frac{|G|}{\left[G: G_{x}\right]} \\
& {\left[G: G_{x}\right]=\text { \# of els in orbit of } x \text {. }}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{x \in X} \frac{1}{\left[G: G_{x}\right]}=\sum_{0 \cdot b_{i+}}\left(\sum_{y \in \operatorname{Orbt}(i)} \frac{1}{\left[G_{i}: G_{y}\right]}\right) \\
& =\sum_{\text {orbits }}\left(\sum_{\text {elsie orbit }} \frac{1}{\text { telson orbit }}\right) \\
& =\sum_{\text {orb } b} 1=K \text {. } \\
& \sum_{x \in x}\left|G_{x}\right|=|G| k . \\
& \sum_{g \in G}\left|X_{g}\right|=k \cdot|G|
\end{aligned}
$$

Counting using Burnside's Theorem
Example: How many different ways can you color the vertices of a square using two colors?

Coloring:

$$
f:\{1,2,3,4\} \rightarrow\left\{R_{1} G\right\}
$$

16 such functmes.
Color wetias Red, Green.
16 colorings

$$
g=R^{2}
$$

$g \in D_{y}$
$f \circ g=h<2 \quad f$ and h are "the same".
Two colorings are the same if they ore in the same orbit for this D_{y}-action.
How many orbits?

$$
K=\frac{1}{|G|} \sum_{g}\left|X_{j}\right| \quad|G|=8
$$

$\frac{D y}{e}$
2 D
16 colorings fixed by e $\overline{8}$ colorings fixed here
$2-7$ -
4 colorings foxed tore
2 问 R, R^{3}
2 colorings 2 fired he d
$1 D R^{2}$
4 colorings firedhere

$$
\Sigma\left|x_{g}\right|=16+2 \cdot 8+2 \cdot 4+2 \cdot 2+1 \cdot 4=16+16+8+4+4=48
$$

$$
K=\frac{1}{|G|} \sum_{g c a}\left|X_{z}\right|=\frac{48}{8}=6
$$

Example: There are 4 different graphs on 3 vertices.

How many graphs are possible with 3 vertices.

2 graphs are equivalent if you an change one to another by renumbering vertios.

+ means bleep it
- means not there.

$$
\therefore \int_{0}^{\infty} 0
$$

$$
\begin{aligned}
& \text { Edges } \begin{array}{r}
(1,2) \\
(2,3)
\end{array} \\
& (1,3) \\
& 8|G|=S_{3} \\
& \text { Labels } t \text {, - } \\
& f: \text { Eaves } \rightarrow\{t,-\} \\
& f \circ \sigma \sim g h \text { orbits. }
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{g} \lg \mid=8+3 \cdot 4+2 \cdot 2 \\
& =8+12+4=24 \\
& 2 \text { (123) } \\
& +{ }_{f}^{+}+{ }^{+}-2 \\
& \frac{24}{6}=4 \quad 4 \text { orris }
\end{aligned}
$$

Example: There are 11 different graphs on 4 vertices.

$$
\begin{array}{ll}
\begin{array}{l}
S_{4} \\
(1234)+S_{y} \\
(1234) \cdot(1,2) \\
(13) \\
(14) \\
(1,4)
\end{array} & \rightarrow \underbrace{(2,2)}_{(2,4)}(3,4)
\end{array}
$$

(12)	+1	+
(13)	+1	+
(141)	+1	+
(23)	$+1-$	+
(34)	$+1-$	+
$(2,4)$	$+1-$	-

$2^{6}=64$ labellings $\quad S_{4}$ acting how many orbits

$$
K \cong \frac{1}{|G|} \sum_{g \in G}\left|X_{g}\right|
$$

\#

$\#$		$\left\|x_{g}\right\|$		
1	e	64	6.4	64
6	(12)	16	+6.16	96
3	$(12)(34)$	16	+48	48
8	(123)	4	32	$\frac{92}{x}$
6	(1234)	4	24	24

$$
\begin{aligned}
& \frac{1}{24}[96+96+48+24] \\
& =4+4+2+1=8+3 \cdot 11
\end{aligned}
$$

$$
\begin{aligned}
& +(12) \underset{(23)}{+1-13)(14)^{+/-}}(24)^{8} \\
& (34)+1- \\
& (12)^{+/ 13}(13)^{+1}(14)^{+1-} \\
& \text { (23) (24) } \\
& (34)^{+/-} \\
& \text {(12โ(1,3) }(1,4) \\
& \begin{aligned}
\lambda(23) \\
+1
\end{aligned}\left(\begin{array}{ll}
\left(2^{2} t\right) \\
(3 & 4
\end{array}\right) \\
& 1243146 \\
& \begin{array}{lll}
y_{2} 3 & 2 \\
y_{3} & 4
\end{array}
\end{aligned}
$$

