The class equation

Definition: Let G be a finite group acting on a finite set X. We say x is a fixed point of G if $G_x = G$ – in other words if gx = x for all $g \in G$. x fixed $pt \in \mathcal{G}$ gx = x for all $g \in G$. $G_x = G$. $g \in GL_2(\mathbb{R})$ $g[\tilde{o}] = [\tilde{o}]$ for all g. [3] is a fixed of for GL2(IR) acting on R?.

Proposition: If X is a finite set with an action by a finite group G, we have

$$|X| = |X_G| + \sum_{i=1}^n |Gx_i|$$

where X_G is the set of fixed points of G and the x_i are representatives for the distinct orbits of G of length greater than one.

Proof:

Example: Consider the subgroup of D_4 consisting of a diagonal reflection acting on the square.

Corollary:

$$|G| = |Z(G)| + \sum_{i=1}^{n} [G : C(x_i)]$$

where Z(G) is the center of G and x_1, \ldots, x_n are representatives for the conjugacy classes having more than one element in G.

Proof:

$$X = G$$
 $g \cdot x = g x g^{-1}$.
Fixed pts:
 $x \in X_G = g \cdot x = x$ \Leftrightarrow $g x g^{-1} = x$ for all $g \in G$
 $x \in X_G = g \cdot x = x$ \Leftrightarrow $g x = x \cdot g$ $(1 \cdot 1)$
Fixed pts for conjugation we earchy $Z(G)$.
If $x \cdot x$ not fixed then we know that
 $|G x| = [G : G x]$
 $g x g^{-1} = x$ \Leftrightarrow $g \in Centralizer(x)$.
 $[G x_i] = [G : Cent(x_i)]$
 $|G x_i| = [G : Cent(x_i)]$
 $|G x_i| = [G : Cent(x_i)]$

Example: Let
$$G = D_1$$
.
 $R = (1234)$
 $R^2 = (13)(24)$
 $R^3 = (1432)$
 (1432)
 $S_1 = (24)$ $S_2 = (12)(34)$
 $S_2 = (13)$ $S_4 = (14)(23)$
 $R = (14)(23)$
 $R = (24)$ $R^3 = R^2$
 $R^2 = R^2$
 (24)
 $R^2 (24)R = R^2 R^2 (24) = R^2 (24) = R^2 (24)$
 $(13)(24)(24) = (13)$
 $R (12)(24)(24) = (14)(32) = S_4$
 $R^3 = R^3 = R^3$
 $R = \{e_1 R^2\} = \{S_1, S_1\} = \{S_2, S_1\} = \{R, R^3\}$
 $R = \{e_1 R^2\} = \{S_1, S_1\} = \{S_2, S_1\} = \{S_2, S_1\} = \{R^3\}$

Corollary: The size of a conjugacy class is a divisor of the order of the group.

$$\begin{vmatrix} conjugecy davo \\ | G|. \\ \forall Size of conjugecy class = [G: G_{x}] |G|. \\ Sy \qquad e \qquad 1 \\ (12) & 6 \\ (12)(34) \qquad 3 & all divide 24. \\ (123) \qquad 8 \\ (1234) \qquad 6 \end{vmatrix}$$

Corollary: A group whose order is a power of a prime has non-trivial center.

$$P^{X} = |G| = |2(G)| + \sum_{\alpha} | \stackrel{\text{togels in conjugacy clan}}{T} | \frac{1}{2} | \frac{1}{2}$$

Corollary: A group of order p^2 is abelian.

Prov): G has
$$p^2$$
 elts

$$|Z(G)| = P \text{ or } p^2$$
if $|Z(G)| = p^2$ then G is abelian.
So suppose $|Z(G)|$ has pelments

$$|G/Z(G)| \text{ has pells } Z(G) \text{ for always numel}$$

$$|G/Z(G)| \text{ has pells } Z(G) \text{ for always numel}$$

$$Z(G) \simeq \mathbb{Z}_p$$

$$C/Z(G) \simeq \mathbb{Z}_p.$$
Take are $a Z(G) \in G / Z(G).$

$$X \in G \qquad X Z(G) = a^2 Z(G).$$

$$X = a^2 3^3, y = a^2 3^2 = a^2 Z(G)$$

$$Y = a^2 3^2 = a^2 3^2 = a^2 3^2 = a^2 3^2 Z(G)$$

$$Y = a^2 3^2 = a^2 3^2 Z(G) = a^2 Z(G).$$

$$X = a^2 3^2 = a^2 3^2 Z(G) = a^2 Z(G).$$

$$Y = a^2 3^2 Z(G) = a^2 Z(G).$$

$$Z = a^2 Z(G) = a^2 Z(G).$$