The class equation
Definition: Let G be a group acting on a set X. We say x is a fixed point of G if $G_{x}=G$ - in other words if $g x=x$ for all $g \in G$.

$$
x \text { fixed pt } \Leftrightarrow g x=x \text { fo all } g \in G \text {. }
$$

$$
G_{x}=G .
$$

$g \in C L_{2}(\mathbb{R})$
$g\left[\begin{array}{l}0 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ fo all g.
$\left[\begin{array}{l}0 \\ 0\end{array}\right]$ is a freed pt pa $G L_{2}(\mathbb{R})$ acting on \mathbb{R}^{2}.
Proposition: If X is a finite set with an action by a finite group G, we have

$$
|X|=\left|X_{G}\right|+\sqrt{\sum_{i=1}^{n}\left|G x_{i}\right|}
$$

where X_{G} is the set of fixed points of G and the x_{i} are representatives for the distinct orbits of G of length greater than one.
Proof:

$$
\begin{aligned}
& |x|=\left|X_{G}\right| \\
& +\sum_{\text {orbis }}\left|+\begin{array}{c}
\text { oh it } \\
\text { orbit }
\end{array}\right|
\end{aligned}
$$

$$
\left.\begin{array}{c}
G x=\{g x \mid g \in G\} \\
G x=\{y \sim x \mid \sim= \\
\text { grequvdind }
\end{array}\right\} \begin{gathered}
|G x|=\mid \Leftrightarrow x \text { is } \\
\text { o fixed } \\
\text { pt }
\end{gathered}
$$

Example: Consider the subgroup of D_{4} consisting of a diagonal reflection acting on the square.

$$
\begin{aligned}
& H \leq P_{H} \\
& H=\{e, s\} \quad X=\{1,2,3,4\} \\
& 4=|X| \phi=\left|X_{H}\right|+|H \cdot 2| \\
& H \cdot 2
\end{aligned}
$$

Corollary:

$$
|G|=\underline{|Z(G)|}+\sum_{i=1}^{n} \underline{\left[G: C\left(x_{i}\right)\right]}
$$

where $Z(G)$ is the center of G and x_{1}, \ldots, x_{n} are representatives for the conjugacy classes having more than one element in G.

Proof:

$$
X=G \quad g \cdot x=g \times g^{-1}
$$

Fired pts:

Fixed ps fou cor jugation we eactly $Z(G)$.
If x is not fixed then we know that

$$
\begin{aligned}
& |G x|=\left[G: G_{x}\right] \\
& g \times g^{-1}=x \quad g \in \frac{\text { Centralizer }(x)}{\{g(g x=x g\} .} \\
& \left|G x_{i}\right|=\left[G: \operatorname{Cent}\left(x_{i}\right)\right]
\end{aligned}
$$

\hat{T} orbit is called a coyyogacy claus.

Example: Let $G=D_{4}$.

$$
\begin{aligned}
& \text { e } \\
& R=(1234) \\
& \begin{array}{l}
R^{2}=\frac{(13)(24)}{(1432)} \\
\left.R^{3}=(24)\right)
\end{array} \\
& \left\{S_{1}=(24) \quad S_{3}=\frac{(12)(34)}{(14)(23)}\right. \\
& S_{2}=(13) \quad S_{4}=(14)(23) \\
& z\left(D_{4}\right)=\left\{e, R^{2}\right\} \\
& R s=s R^{-1} \\
& R^{4}=e \\
& R^{2}=R^{-2} \\
& S_{3} R^{2} S_{3}^{-1}=(24)(13)=R^{2} \\
& \text { (24) } \\
& R^{-1}(24) R=R^{-1} R^{-1}(24)=R^{-2}(24)=R^{2}(24) \\
& \frac{(13)(24)}{R^{2}}(24)=(13) \\
& R(12)(34) R^{-1}=R(12) R(34)=R R^{-1}(12)(34) \\
& (24)(12)(34)(24)=(14)(32)=S_{4} \quad Z(6)=e_{j} R^{2} . \\
& \left\{S_{1}, S_{2}\right\} \quad\left\{S_{3}, S_{4}\right\}, \quad\left\{R, R^{3}\right\} \\
& S R S^{-1}=R^{-1}=R^{3}
\end{aligned}
$$

Corollary: The size of a conjugacy class is a divisor of the order of the group.

$$
\begin{aligned}
& \mid \text { conjugacy cars }||G| \\
& \begin{array}{c}
\text { e group. } \\
\text { size of conjugacy clans }=[G: G x]|G| . \\
S_{4} \\
(12) \\
(12)(34) \\
(123)
\end{array} \quad 3 \\
&
\end{aligned}
$$

Corollary: A group whose order is a power of a prime has non-trivial center.

$$
\begin{aligned}
& \left.p^{K}=\underline{|G|}=\frac{|z(G)|}{S}+\sum_{\substack{\text { orbies } \\
\text { condurs }}} \right\rvert\, \text { of elts in conjugacy clar } \mid \\
& \text { all powens of } \\
& \text { If }|z(G)| c \mid \text { Hen }|z(a)| \geqslant 1 \\
& \sum_{\text {divistle }}^{P^{k}}=1+\underbrace{\sum \text { powens of } P}_{\text {diwsible by } p} \\
& \text { pyy but that's impossible } \\
& \text { So }|z(G)| \geqslant p \text {. } \\
& \text { Q } \pm 1, \pm i, \pm \jmath\lrcorner \pm K \\
& \{ \pm 1\}=z(Q)
\end{aligned}
$$

Corollary: A group of order p^{2} is abelian.
Proof: G has p^{2} els

$$
|z(G)|=p \text { or } p^{2}
$$

If $|Z(G)|=\rho^{2}$ Then G is abelian.
So suppose $|z(G)|$ has p elements
$|G / Z(G)|$ hos pols $Z(G)$ is always namal

$$
\begin{aligned}
& Z(G) \simeq \mathbb{Z}_{p} \\
& G / Z(G) \simeq \mathbb{Z}_{p} .
\end{aligned}
$$

Take ad $a Z(G) \in G / Z(G)$.

$$
\begin{array}{cc}
x \in G & x z(G)=a^{i} z(G) \\
y \in G & y z(G)=a^{i} z_{1} \\
y=a^{j} z(G) \\
y=a^{j} z_{2} \\
x y=a^{i} z_{1} a^{j} z_{2} & =a^{i+j} z_{1} z_{2} \\
y x=a^{j} z_{2} a^{i} z_{1}=a^{i+j} z_{2} z_{1}=a^{i+j} z_{1} z_{2}
\end{array}
$$

$\Rightarrow G$ is aldan
$|G|<p^{2}$ Hen $G \simeq \mathbb{T}_{p}{ }^{2}$

$$
\text { or } \quad G \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{p}
$$

