Group Actions

Definition: Let X be a set and G be a group. A (left) action of G on X is a map

$$
\begin{gathered}
G \times X \rightarrow X \\
(g, x) \mapsto g x
\end{gathered}
$$

such that $e x=x$ and $g_{1}\left(g_{2} x\right)=\left(g_{1} g_{2}\right) x$ for all $x \in X$ and $g_{1}, g_{2} \in G$.

$$
\begin{aligned}
e \cdot x & =x \quad \rho_{n} \text { all } x \in x . \\
g_{2}\left(g_{1} x\right) & =\left(g_{2} g_{x}\right) x .
\end{aligned}
$$

Example 1: Matrix groups acting on \mathbb{R}^{n}.

- $\mathrm{GL}_{2}(\mathbb{R})$ and its subgroups on \mathbb{R}^{2}.

$$
\begin{aligned}
& \begin{array}{l}
g \in G L_{2}(\mathbb{R}) \quad x \in\left[\begin{array}{l}
x_{0} \\
g=\left(\begin{array}{l}
a y \\
x_{1} \\
0
\end{array}\right]
\end{array}\right] \in \mathbb{R}^{2} .
\end{array} \\
& (g, x)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left[\begin{array}{l}
x_{0} \\
x_{1}
\end{array}\right] \\
& \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left[\begin{array}{l}
x_{0} \\
x_{1}
\end{array}\right]=\left[\begin{array}{c}
x_{0} \\
x
\end{array}\right] \\
& \begin{array}{ll}
\hat{1} & g_{1} \\
\xi_{2} & g_{1}
\end{array} \\
& g_{1} g_{2}
\end{aligned}
$$

- same for $\mathrm{GL}_{n}(\mathbb{R})$ and its subgroups on \mathbb{R}^{n}.

$$
H \subseteq G L_{n}(\mathbb{R})
$$

H also acts or \mathbb{R}^{n} using save map

$$
G \times X \rightarrow X
$$

bow
botany using $h \in G$.

Example 2: Dihedral groups acting on polygons

- D_{n} acting on the vertices of the regular polygon with n sides.

$$
\begin{aligned}
& D_{4} \\
& e R R^{2} R^{3} \\
& S, S R, S R^{2}, S R^{3} \\
& R S=S R^{-1} \text {. } \\
& R: \operatorname{lic}_{\substack{\rightarrow \\
2 \rightarrow 3 \\
3 \rightarrow 1 \\
9 \rightarrow 1}} \quad(1234)(1)=2 . \\
& S=1 \rightarrow 2 \quad 2 \sim 1 \quad(12)(34) \\
& S(4)=3 \quad 5(1)=2 . \\
& D_{Y} \times X \rightarrow X \\
& x=\{1,2,3,4\} .
\end{aligned}
$$

S_{n} acting an $[1, \ldots, n]$
$\sigma \in S_{n}$ is a functm from $[1, \ldots n] \rightarrow[1, \ldots, n]$

$$
\begin{array}{ll}
(\sigma, j)=\sigma(j) & \sigma(123) \in S_{5} \\
S_{n} \quad(x=[1, \ldots, n] & \sigma(1)=2 \quad \sigma(3)=1 \\
\sigma(2)=3 \quad \sigma(e l a)=1 \text { tgolf }
\end{array}
$$

Example 3: G acts on itself by conjugation.

$$
\begin{aligned}
& X=G \\
& G \times X \rightarrow X \\
& (g, x)=6 g x g^{-1} . \\
& (e, x)=e x e^{-1}=x \\
& \text { b } g_{1}\left(g_{2} x\right)=g_{1}\left(g_{2} \times g_{2}^{-1}\right) \\
& =g_{1} g_{2} \times g_{2}^{-1} g_{1}^{-1} \\
& =\left(g_{1} g_{2}\right) \times\left(g_{1} g_{2}\right)^{-1} \\
& =\left(g_{1} g_{2}\right) \cdot x
\end{aligned}
$$

$\sigma \in S_{4}$

$$
\begin{aligned}
& \sigma=\frac{(12)(34)}{} \\
& =\operatorname{gog}^{-1} \Leftrightarrow
\end{aligned}
$$

$\begin{aligned} \tau=g^{\sigma} g^{-1} \Leftrightarrow \tau & \quad \text { has save decmpositu } \\ \tau & =(13)(24)\end{aligned}$ Suss

$$
\left.\begin{array}{rl}
\tau= & (13)(24) \\
& (14)(23) \\
& (12)(34)
\end{array}\right\}
$$

Example 4: G acts on the left coset of a subgroup H.

- Let H be one of the two element subgroups of S_{3}. Consider the action of S_{3} on these cosets.
$G \quad H C G$.
G act on eft cosets of H by

$$
\begin{aligned}
& (g, \times H)=g \times H \quad G \times \operatorname{cose} b \rightarrow \operatorname{cosel} t . \\
& (e, x H)=e x H=x H \\
& g_{1} \cdot\left(g_{2} \times H\right)=g_{1}\left(g_{2} \times H\right)=g_{1} g_{2} \times H \\
& g_{2} \times H \\
& =\left(g_{1} g_{2}\right) \times H . \\
& \left(g_{2}, \times H\right) \rightarrow g_{2} \times H . \\
& G=S_{3} \quad H=\{(1,12)\}, \\
& \text { (13) } \begin{aligned}
& H \\
&\{(13),(13)(12)\} \\
&=\{(13),(123)\}
\end{aligned} \\
& \begin{array}{l}
=\{(13),=\{(13),(12),(123)\} \\
=H,
\end{array} \\
& \text { (123) } H=(123) H=(13) H \\
& (123)(13) H=(23) H \\
& \text { (123) }(23) H=k \quad H \\
& \{(23),(23)(12)\} \\
& =\{(23),(132)\} \text {. }
\end{aligned}
$$

Orbits and stabilizers
Definition: Two points $x, y \in X$ are G-equivalent if there is a $g \in G$ such that $y=g x$. G-equivalence is an equivalence relation and the classes are called orbits. Our book writes O_{x} for the orbit containing x but I like to write $G x$.

Example: S_{3} acting on itself by conjugation.
G acts on X

- $x \sim x$? yes $x=e \cdot x$.
- if $x \sim y$ is $y \sim x$? $x \sim y$ means $y=g \cdot x$.

$$
g^{-1} y=g^{-1} g x=e \cdot x=x
$$

- $x \sim y$ and $y \sim z \Rightarrow y=g_{1} x \quad z=g_{2} y$.

$$
z=g_{2} g_{1} x
$$

X gets divide up into classes. ORBITS
Each orbit $\underbrace{G x}_{\tau} O_{x}$.
$S_{3} 2$ permurtinns are conjugate \Leftrightarrow they hove same cycle decamp. S_{3} actuy ar $x=S_{3}$
$\sigma=g \pi g^{-1} \Leftrightarrow$ same cycle dome.
Orbit:

$$
\begin{array}{ll}
e & g \cdot e=g e g^{-1}=e \\
(12) & g(12) g^{-1}=(a b 1 \\
(123) & g(123) g^{-1}=(a b c) .
\end{array}
$$

Definition: If $x \in X$, the set of g such that $g x=x$ is called the stabilizer subgroup or just the stabilizer of x. It is a subgroup of G written G_{x}.

Example: S_{3} acting on itself by conjugation.

$$
\begin{aligned}
& x \in X \quad G_{x}=\{g \mid g x=x\} \text {. } \\
& e \in S_{3} \text { conjusutu. } \\
& g \in G_{e} \Leftrightarrow g e g^{-1}=e \quad \text { that's the fuel } g \text { ! } \\
& G_{e}=G . \\
& g \in S_{3} \text { so that } g(12) g^{-1}=(12) \\
& g(12)=(12) g \\
& g=e \quad g=(12) \quad\{e,(12)\} \\
& G_{(12)} \\
& \begin{array}{l}
(13)(12)(13)=(23) \text { dent } \text { fou }_{1} \times(12) \\
=(13) \quad 11
\end{array} \\
& (23)(12)(23)=(13) \\
& x \quad x=(123) \\
& g^{\prime a} g^{-1} \\
& \left\{e_{,}(123),(132)\right\} G_{(123)}=\left\{e_{,}^{(123)}(132)\right\} .
\end{aligned}
$$

Lena: G_{x} is a subgroup.

$$
G_{x}=\{g \mid g x=x\}
$$

$e \in G_{x}$? yes $e^{x}=x$.

$$
\begin{aligned}
e \in G_{x} ? & g_{2} \\
g_{1} g_{2} \in G_{x} & g_{1}\left(g_{2} x\right)=g_{1} x=x \\
& \left(g_{1} g_{2}\right) x
\end{aligned}
$$

$$
-\left(g_{1} g_{2}\right) \times
$$

$$
\cdot \xi x=x \quad g_{7}^{g^{-1} g x}=g^{11} x
$$

- D_{4} acting on the square

$\{1,2,3,4\}$

$$
R \in D_{4} \quad R(1)=2 \quad R(2)=3 \quad R(3)=4
$$

(o) $\left.\begin{array}{l}2 \sim 1 \\ 2 \sim 3 \sim 2\end{array}\right\}$ all vertices are G-equivalent. $4 \sim 3$
$1 \sim 4$ The is one orbit $\{1,2,3,4\}$.

$$
\begin{aligned}
& G_{(1)}=\{e,(24)\} \\
& G_{(3)}=\{e,(24)\}
\end{aligned}
$$

$$
G_{2}=\{e,(13)\}
$$

$$
G_{4}=\{e,(* 3)\}
$$

- S_{4} acting on itself by conjugation. every $g E^{5} y$ is conjugste

$$
\begin{aligned}
& \text { Orbits } \\
& \text { e } \\
& \begin{array}{l}
e \\
(12)
\end{array} \\
& \text { (123) } \\
& (12)(34) \\
& \text { (1234) } \\
& \begin{array}{r}
\text { Orbt of } e=\left\{g e g^{-1} \mid g \in S_{4}\right\}=\{e\} \\
\left.S g(12) g^{-1} \mid g \in S_{4}\right\}=
\end{array} \\
& \begin{cases}\text { Orbit of } e=\left\{g e g^{-1} \mid g \in S_{4}\right\}=\{ \\
\left.\begin{array}{ll}
\text { Orbit of }(12)=\left\{g(12) g^{-1} \mid g \in S_{4}\right\}
\end{array}\right\}=\{(a b)\} & \text { belts. } \\
\text { Orbit of }(123)=\{3-\text { cycles }\} & \text { 8elts. }\end{cases} \\
& \text { Stabilige of (12) } \\
& G_{(12)}=\left\{g \mid g(12) g^{-1}=(12)\right\} \\
& G_{(123)}=\left\{g \mid g(123) g^{-1}=(123)\right\} \quad\{e,(123),(132)\} .
\end{aligned}
$$

- The orthogonal group $O(2)$ acting on the plane.
$\mathrm{SO}_{2} \subseteq \mathrm{O}_{2}$ rotations reflections

$$
\rightarrow\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Orbit of $\left[\begin{array}{l}1 \\ 0\end{array}\right]$

$$
\begin{aligned}
& O(2)\left[\begin{array}{l}
1 \\
0
\end{array}\right] \text { a circle. } \\
& O(2)\left[\begin{array}{l}
n \\
0
\end{array}\right]=\begin{array}{r}
\text { arcke of } \\
\text { radius } n .
\end{array} \\
& O(2)\left[\begin{array}{l}
0 \\
0
\end{array}\right]=0
\end{aligned}
$$

stabilizer of $\left[\begin{array}{l}1 \\ 0\end{array}\right]$.

$$
\left\{e,\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\right\}=G_{\{[0]\}}
$$

- The subgroup \mathbb{Z} acting on \mathbb{R}.

$$
\mathbb{Z} \text { on } \mathbb{R} \text {. }
$$

Orbit of \{0\}.

$$
\begin{aligned}
& \{0+n\} n \in \mathbb{Z}\}=\mathbb{Z} \subseteq \mathbb{R} \\
& \text { orbit of }\{\pi\} \\
& \{n+\pi \mid n \in \mathbb{Z}\} \\
& \operatorname{Stab}(x)=\{n \mid x+n=x\}=\{0\}
\end{aligned}
$$

- The permutation group S_{n} acting on strings of 0's and 1's of length n by permuting their positions.

$$
\left.\begin{array}{rl}
X & =\{\overbrace{20100 \backslash 100 \cdots 1}^{n+\overbrace{2} \times \mathbb{Z}_{2} \times \ldots \times \mathbb{t}_{2}}
\end{array}\right\}
$$

$$
\begin{aligned}
& \text { Sn acts } \\
& n=3 \quad S_{3} \\
& \text { (12) } \\
& \\
& \text { Orbit of }(01.1001 .-01=x \\
& \underset{\text { Gequindent }}{\sim}(0 \cdots 0 \cdots 1 \ldots 1) \\
& 0 \xrightarrow{10} \stackrel{(123)}{\leftrightarrows}(001)
\end{aligned}
$$

$x \sim y \Leftrightarrow$ fley have same \# of I's.
n orbits

0	1 's	$00 \cdots 0$
1	1	$00 \cdots 01$
2	1 's	$00 \cdots 11$

$n=5$

Sha of $\underbrace{\sim_{0}^{k} 0} \underbrace{n-k-1}$
Stab is $\quad S_{\underline{k}} \times S_{n-k}^{12}$

Proposition: Let $x \in X$. The map

$$
p_{x}: \underline{G} \rightarrow \underset{\sim}{X}
$$

defined by $p(g)=g x$ gives a bijection between the coset of the stabilizer subgroup G_{x} and the orbit $G x$. In particular $\left[G: G_{x}\right]$ and $|G x|$ are either both infinite or both finite, and if both finite then $\widehat{|G x|}=\left[G: G_{x}\right]$.
Proof:

$$
\begin{aligned}
& \text { Cosets of stabilizer } \stackrel{\text { bigective }}{\Longleftrightarrow} \text { elements of orbit } \\
& \text { of } x
\end{aligned}
$$

$$
x \in X
$$

$$
\begin{aligned}
& P_{x}: G \rightarrow x \\
& P_{x}(g)=g_{x} .
\end{aligned}
$$

By definition image $=$ orbit of $\bar{x}=G_{x}$.

$$
\begin{aligned}
& g \in G_{x} \quad p_{x}(g)=g x=x . \\
& \tilde{p}: \begin{array}{l}
\text { contr of } \\
\text { os in }
\end{array} \quad \rightarrow \text { Orbit of } x \text { in } X . \\
& \tilde{p}\left(g G_{x}\right)=g x . \\
& g_{1} \in g G_{x} \quad g_{1}=g_{T} \quad h \in G_{x} \\
& g_{1} x=g h x=
\end{aligned}
$$

13
If $x^{\prime} \in G x$ the $x^{\prime}=g x$ for some g.

$$
\tilde{p}\left(g G_{x}\right)=g x=x^{\prime}
$$

SURJECTVE

If $\tilde{p}\left(g_{1} G_{x}\right)=\tilde{p}\left(g_{2} G_{x}\right)$.
then $g_{1} x=g_{2} x$
so $\quad g_{2}^{-1} g_{1} x=x$
$g_{2}^{-1} g_{1} \in G_{x}$

$$
\begin{array}{ll}
g_{1} \in G_{x} \\
g_{1} \in g_{2} G_{x} & g_{1} G_{x}=g_{2} G_{x} \\
\text { injectivily. }
\end{array}
$$

D_{4}

$$
D_{-8} \cdot 1=\frac{\{1,2,3,4\}}{4} \text {. }
$$

Stad of $1==^{4}\{e,(2 x)\}$.

