Group Actions

Definition: Let X be a set and G be a group. A (left) action of Gon X is a map

$$G \times X \to X$$

$$(g, x) \mapsto gx$$

such that
$$ex = x$$
 and $g_1(g_2x) = (g_1g_2)x$ for all $x \in X$ and $g_1, g_2 \in G$.

$$e \cdot x = x \qquad \text{for all } x \in X.$$

$$g_2(g_1 \times) = (g_2g_2) \times.$$

Example 1: Matrix groups acting on \mathbb{R}^n .

• $GL_2(\mathbb{R})$ and its subgroups on \mathbb{R}^2 .

$$G \in GL_2(\mathbb{R}) \qquad k \in \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} \in \mathbb{R}^2$$

$$(G_1 \times) = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \end{bmatrix}$$

$$\begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} \begin{pmatrix} a & b \\ c' & d' \end{pmatrix} \begin{pmatrix} a & b \\ x_1 \end{pmatrix} = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} \begin{pmatrix} a & b \\ x_1 \end{pmatrix} \begin{bmatrix} x_0 \\ c' & d' \end{pmatrix} \begin{bmatrix} x_0 \\ c' & d' \end{bmatrix}$$

$$\begin{cases} G' & b' \\ G' & d' \end{bmatrix} \begin{pmatrix} G' & b \\ G' & d' \end{pmatrix} \begin{pmatrix} G' & b \\ G' & d' \end{pmatrix} \begin{pmatrix} G' & b \\ G' & d' \end{pmatrix} \begin{pmatrix} G' & b \\ G' & d' \end{pmatrix} \begin{pmatrix} G' & b \\ G' & d' \end{pmatrix} \begin{pmatrix} G' & b \\ G' & d' \end{pmatrix} \begin{pmatrix} G' & b' \\ G' & d' \end{pmatrix} \begin{pmatrix} G' & b \\ G' & d' \end{pmatrix} \begin{pmatrix} G' & b \\ G' & d' \end{pmatrix} \begin{pmatrix} G' & b' \\ G' & d' \end{pmatrix} \begin{pmatrix} G' & b \\ G' & d' \end{pmatrix} \begin{pmatrix} G' & b \\ G' & d' \end{pmatrix} \begin{pmatrix} G' & b' \\ G' & d' \end{pmatrix} \begin{pmatrix} G' & b \\ G' & d' \end{pmatrix} \begin{pmatrix} G' & b \\ G' & d' \end{pmatrix} \begin{pmatrix} G' & b' \\ G' & d' \end{pmatrix} \begin{pmatrix} G' & b \\ G' & d' \end{pmatrix} \begin{pmatrix} G' & b \\ G' & d' \end{pmatrix} \begin{pmatrix} G' & b' \\ G' & d' \end{pmatrix} \begin{pmatrix} G' & b \\ G' & d' \end{pmatrix} \begin{pmatrix} G' & b \\ G' & d' \end{pmatrix} \begin{pmatrix} G' & b' \\ G' & d' \end{pmatrix} \begin{pmatrix} G' & b \\ G' & d' \end{pmatrix} \begin{pmatrix} G' & G' & G' \\ G' & G' & G' \end{pmatrix} \begin{pmatrix} G' & G' & G' \\ G' & G' &$$

• same for $GL_n(\mathbb{R})$ and its subgroups on \mathbb{R}^n .

Example 2: Dihedral groups acting on polygons

• D_n acting on the vertices of the regular polygon with n sides.

Example 3: G acts on itself by conjugation.

Example 4: G acts on the left cosets of a subgroup H.

• Let H be one of the two element subgroups of S_3 . Consider the action of S_3 on these cosets.

G H=G.

Gact on Mt cosets of H by

$$(g_3 \times H) = g \times H$$
 $G \times \cos b \rightarrow \cos t$.

 $(e_3 \times H) = e \times H = x H$
 $(e_3 \times H) = g(g_2 \times H) = g(g_2 \times H)$
 $= (g_1 \cdot g_2 \cdot x H)$
 $= (g_2 \cdot x H) \rightarrow g_1 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$
 $= (g_2 \cdot x H) \rightarrow g_2 \cdot x H$

Orbits and stabilizers

Definition: Two points $x, y \in X$ are G-equivalent if there is a $g \in G$ such that y = gx. G-equivalence is an equivalence relation and the classes are called **orbits**. Our book writes O_x for the orbit containing x but I like to write Gx.

Example: S_3 acting on itself by conjugation.

Definition: If $x \in X$, the set of g such that gx = x is called the stabilizer subgroup or just the stabilizer of x. It is a subgroup of Gwritten G_x .

Example: S_3 acting on itself by conjugation.

Example:
$$S_3$$
 acting on itself by conjugation.

 $x \in X$
 $G_x = \{g \mid gx = x\}.$
 $e \in S_3$
 $e \in S$

 $g = \frac{1}{2} \times \frac{1}{2} \times$

{1,2,3,4} partitued into orbits

REDy R(2)=3 R(3)=4 R(4)=1

2-1 de vertier au G-equivalent. 303~2 all vertier au G-equivalent. 4~3 The is one orbit \$1,2,3,4).

 $G_{(2)} = \{e, (24)\}$ $G_2 = \{e, (13)\}$ $G_{(3)} = \{e, (24)\}$ $G_4 = \{e, (13)\}$

•
$$S_4$$
 acting on itself by conjugation. every $g \in S_4$ is compress G on all those G of the G of G

• The orthogonal group O(2) acting on the plane.

SO₂ \subseteq O₂ rotations reflections $\begin{array}{cccc}
O(2) \begin{bmatrix} 1 \\ 0 \end{bmatrix} &= circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle & \\
O(2) \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= Circle$ • The subgroup \mathbb{Z} acting on \mathbb{R} .

Orbit of
$$\{0\}$$
.

Solve of $\{n\}$
 $\{n+\pi\} \mid n \in \mathbb{Z}\}$

Stab $\{x\}$
 $\{n+\pi\} \mid n \in \mathbb{Z}\}$
 $\{n+\pi\} \mid n \in \mathbb{Z}\}$

• The permutation group S_n acting on strings of 0's and 1's of length n by permuting their positions.

$$X = \begin{cases} 00100 | 100 | 1 \\ 123 | 100 \\ 123 | 100 \end{cases}$$

$$= \begin{cases} 1 & 23 \\ 000 | 000 \\ 000 | 000 \\ 000 | 000 \end{cases}$$

$$= \begin{cases} 1 & 23 \\ 000 | 000 \\ 000 | 000 \\ 000 | 000 \end{cases}$$

$$= \begin{cases} 1 & 23 \\ 000 | 000 | 000 \\ 000 | 000 | 000 \\ 000 | 000 | 000 \\ 000 | 000 | 000 \\ 000 | 000 | 000 \\ 000 | 000 | 000 | 000 \\ 000 | 0$$

Proposition: Let $x \in X$. The map

$$p_x: \underline{G} \to X$$

defined by p(g) = gx gives a bijection between the cosets of the stabilizer subgroup G_x and the orbit Gx. In particular $[G:G_x]$ and |Gx| are either both infinite or both finite, and if both finite then $|Gx| = [G:G_x]$.

Cosets of stabilizer Signature elements of orbit of x. **Proof:** $x \in X$ $P_{\mathbf{x}}: G \longrightarrow X$ $P_{x}(3) = \frac{\partial x}{\partial x}$ By definition image = orbit of x= Gx $g \in G_X$ $p_X(g) = g_X = X$. $\widetilde{p}: \underset{Cost_X}{\text{left}} \text{ of } \longrightarrow \text{ Orbit of } x \text{ in } X$. $\mathcal{P}(gG_{\pi}) = g \times .$ $g_1 \in gG_X$ $g_2 = gh$ $h \in G_X$ $g_1 \times = gh \times = g \times$ If $x' \in G_X$ thin x' = gx for some g. $\beta(qG_x) = qx = x!$ SURJECTUR If $\vec{p}(q_1G_x) = \vec{p}(q_2G_x)$,

then $q_1 \times = q_2 \times$ So $q_2^{-1}q_1 \times = \times$ $q_2^{-1}q_1 \in G_x$ $q_1 \in q_2G_x$ $q_1 \in q_2G_x$ $q_1 \in q_2G_x$ $q_2 \in q_2G_x$ $q_1 \in q_2G_x$ $q_2 \in q_2G_x$ $q_2 \in q_2G_x$ $q_3 \in q_2G_x$ $q_4 \in q_2G_x$ $q_5 \in q_5 \in q_5$ $q_5 \in q_5 \in q_5$ $q_5 \in q_5$ q_5