Fundamental Theorem of Finite Abelian
Groups

Theorem: Let GG be a finite ablelian group. Then G is isomorphic
to a product of cyclic groups of prime power order.
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Theorem: The isomorphism classes of finite abelian groups of order

n correspond to sequences d_1|d2| <o+ dp, with didy -+ -dj. = n. Each 4,7\
such sequence corresponds to the product of cyclic groups of order d;.
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Outline of proof - Main Lemmas

1. An abelian group G of order n has an element of order p, where /
p is prime, if and only if p|n.
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2. If every element of G has order a power of a fixed prime p, then >

the number of elements in G is a power of p. Such a group is

called a finite abelian p-group.
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3. It G is a finite abelian p group, then either G is cyclic or a

product of a cyclic p-group and another abelian p-group.
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4. 1f G is a finite abelian group of order nm where ged(n,m) =1,
then G is the product of the subgroups G, and G consisting
of elements of order dividing n and m respectlvely
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Assembly

« Start with an abelian group of order n. Use (4) to split it up

into subgroups, each consisting of elements of order a power of
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« Each such factor is a finite abelian p group so it is either cyclic
or splits as a cyclic factor times a smaller abelian p-group by
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« By repeating the previous step you reduce to the case that all
factors are cyclic p-groups.



