Fundamental Theorem of Finite Abelian Groups

Theorem: Let G be a finite ablelian group. Then G is isomorphic to a product of cyclic groups of prime power order.

Examples:

- G has order 100
G finite abclian with 100 efts.

$$
\begin{aligned}
& G=G_{1} \times G_{2} \ldots \ldots \times G_{R} \text { where } G_{i} \text { is cynic of price towns } \\
& \left|G_{0}\right|=p_{i}^{k_{i}} \quad i=1, \ldots, n, n \\
& 100=|G|=\prod_{i=1}^{n} p_{i}^{k i} \\
& 100=2.2 .5 . S \quad G=\boldsymbol{Z}_{2} \times \mathbb{D}_{2} \times \boldsymbol{D}_{5} \times \mathbb{D}_{S} \\
& =2^{2} \text { S. S. S } \quad Z_{4} \times Z_{5} \times Z_{5} \\
& =2.2 .5^{2} \quad \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \\
& =2^{2} \cdot 5^{2} \quad \mathbb{Z}_{4} \times \mathbb{Z}_{25}
\end{aligned}
$$

- G has order 27

$$
\begin{array}{cc}
27=3^{3} & \\
3 \cdot 3 \cdot 3 & \mathbb{Z}_{2} \times \mathbb{T}_{3} \times \mathbb{Z}_{3} \\
3 \cdot 3^{2} & \mathbb{T}_{3} \times \mathbb{Z}_{9} \\
3^{3} & \mathbb{T}_{27}
\end{array}
$$

Theorem: The isomorphism classes of finite abelian groups of order n correspond to sequences $d_{1}\left|d_{2}\right| \cdots d_{k}$ with $d_{1} d_{2} \cdots d_{k}=n$. Each $\quad d_{i}>1$ such sequence corresponds to the product of cyclic groups of order d_{i}.

- G has order 108.

$$
\begin{array}{ll}
108= & 3^{3} \cdot 2^{2} \\
d_{1}=108 & \mathbb{Z}_{108} \\
2 \mid 54 & \mathbb{Z}_{2} \times \mathbb{Z}_{54} \\
3 \mid 36 & \mathbb{Z}_{3} \times \mathbb{Z}_{36} \\
36 \\
3 \mid 18 & \mathbb{Z}_{6} \times \mathbb{Z}_{18} \\
3 \mid 12 & \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{12} \\
316 \mid 6 & \mathbb{Z}_{3} \times \mathbb{Z}_{8} \times \mathbb{Z}_{6}
\end{array}
$$

$$
\begin{array}{r}
G=G_{d_{1}} \times G_{d_{2}} \times \cdots G_{2 x} \\
\mathbb{Z}_{3} \times \overbrace{\mathbb{Z}_{3} \times \mathbb{Q}_{3} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}}^{S S \underbrace{2}} \\
\mathbb{\mathbb { Z }}_{3} \times \mathbb{Z}_{6} \times \mathbb{Z}_{6} \\
\mathbb{Z}_{6} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{\mathbb { Z }}_{3} \\
\mathbb{\mathbb { Z }}_{6}
\end{array}
$$

- G has order 81 .

$$
919 \quad 31319
$$

$$
\begin{array}{ccc}
81=3^{4} & \\
3|3| 3 \mid 3 & \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} & \\
3 \mid 319 & \mathbb{T}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{9} & \mathbb{Z}_{9} \times \mathbb{Z}_{9} \\
3 \mid 27 & \mathbb{Z}_{3} \times \mathbb{T}_{27} & \\
81 & \mathbb{Z}_{81}
\end{array}
$$

Outline of proof - Main Lemmas

1. An abelian group G of order n has an element of order p, where p is prime, if and only if $p \underline{n}$.

$$
p\|G\| \Rightarrow \exists \underset{\text { withader } p}{g \in G}
$$

2. If every element of G has order a power of a fixed prime p, then the number of elements in G is a power of p. Such a group is called a finite abelian p-group.

3. If G is a finite abelian p group, then either G is cyclic or a product of a cyclic p-group and another abelian p-group.

$$
\underset{\uparrow}{G}=C_{p}{ }^{i \times} \times \underset{\uparrow}{H}
$$

4. If G is a finite abelian group of order $n m$ where $\operatorname{gcd}(n, m)=1$, then \underline{G} is the product of the subgroups G_{n} and $G_{\underline{m}}$ consisting of elements of order dividing n and m respectively.

$$
G=G_{n} \times G_{m}
$$

Assembly

- Start with an abelian group of order n. Use (4) to split it up into subgroups, each consisting of elements of order a power of a different prime p.

$$
\begin{aligned}
n & =p_{1}^{n_{1}} \cdots p_{k}^{n_{k}} \\
G & =G\left[p_{1}^{n_{1}}\right] \times G\left[p_{2}^{n_{2}}\right] \ldots \\
\because & G\left[p_{i}^{n_{i}}\right]=\left\{g \in G\left(\begin{array}{r}
\text { arden }(g) \text { is } \\
\text { power of } p_{i}
\end{array}\right\}\right.
\end{aligned}
$$

- Each such factor is a finite abelian p group so it is either cyclic or splits as a cyclic factor times a smaller abelian p-group by (3)

$$
G\left[\underline{p_{i}}\right] \simeq C_{p_{i}}^{s_{1}} \times C_{\underline{p_{1}^{\prime}}}^{s_{2}} \times C_{p_{i} s_{k}}
$$

- By repeating the previous step you reduce to the case that all factors are cyclic p-groups.

