Wallpaper and Crystals

Lattices

Definition: A lattice L in \mathbb{R}^{n} is a subgroup consisting of all integer linear combinations of a basis of \mathbb{R}^{n}. That is,

$$
L=\left\{a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}: n_{i} \in \mathbb{Z}\right\}
$$

where x_{1}, \ldots, x_{n} are a linearly independent set of vectors in \mathbb{R}^{n}

Examples

- $n=2, x_{1}=\mathbf{i}, x_{2}=\mathbf{j}$.

$$
L=\{a \hat{\imath}+b \hat{\jmath} \quad \mid a, b \in \mathbb{Z}\}
$$

- $n=3$ (See Figure 12.17 in the text):

Proposition: A lattice in \mathbb{R}^{n} is an abelian group that is isomorphic to \mathbb{Z}^{n}.

$$
\begin{aligned}
& \mathbb{Z}^{n}=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{i} \in \mathbb{Z}\right\} \\
& f: \mathbb{Z}^{n} \longrightarrow L \leq \mathbb{R}^{n} \quad L=\left\{\sum_{i=1}^{n} a_{i} x_{i} \mid a_{i} \in \mathbb{Z}\right\} \\
& f\left(\left(a_{1}, \ldots, a_{n}\right)\right)=\sum_{i=1}^{n} a_{i} x_{i} \\
& f\left(\left(a_{1}, \ldots, a_{n}\right)\right)+f\left(\left(b_{1}, \ldots h_{n}\right)\right)=\sum_{i=1}^{n} a_{i} x_{i}+\sum_{i=1}^{n} b_{i} x_{i} \\
&=\sum_{i=1}^{n}\left(a_{i}+b_{i}\right) x_{i}=f\left(\left(a_{1}, b_{1}, \ldots, a_{n}+b_{n}\right)\right) \\
& \operatorname{spp}^{2} f\left(\left(a_{1, \ldots}, \ldots, a_{n}\right)\right)=0 .
\end{aligned}
$$

Hen $\sum_{i=1}^{n} a_{i}^{\prime} x_{i}=0$. But $\left\{x_{i}\right\}$ are cbanis so this means all $a_{i}=0$.
so $\left(a_{1} \ldots, a_{n}\right)=\left(0_{1} \ldots 0\right)$

$$
\begin{aligned}
&\left(a_{1} \ldots, a_{n}\right)=\left(0_{1} \cdots 0\right) \\
& l \in L \quad l=\sum a_{i} x_{i} \quad \text { then } \quad f\left(a_{n} \ldots, a_{n}\right)=l, \\
& \sum a_{i} x_{i} .
\end{aligned}
$$

Definition: Let L be a lattice in \mathbb{R}^{n}. The automorphism group of L is the subgroup of $\mathrm{GL}_{n}(\mathbb{R})$ consisting of matrices g such that $g L=L$. This group is called the unimodular group .

Proposition: The unimodular group is the group $\mathrm{GL}_{n}(\mathbb{Z})$ consisting of $n \times n$ matrices with integer entries and determinant ± 1.
\mathbb{R}^{2}

$$
\begin{aligned}
& L=\{a \hat{\imath}+b \hat{\jmath}\} \\
&=\{a \hat{\imath}+b(-\hat{\jmath})\} \\
&=\{a \hat{\imath}+b(\hat{\imath}+\hat{\jmath})\} \\
& G L_{n}(\mathbb{Z})=\{g \mid g L=L\} .
\end{aligned}
$$

$n=2$ care.

$$
\begin{aligned}
& L \text { spanned by } e_{1}, e_{2} \text {. } \\
& L=\left\{a e_{1}+b e_{2}\right\} \text {, } \\
& g=\left(\begin{array}{cc}
80 g_{11} g_{12} \\
g_{4} & g_{22}
\end{array}\right) \quad g L \stackrel{?}{=} L . \quad g\left(a e_{1}+b e_{2}\right) \\
& L \subseteq g L ? \\
& g L=\left\{\operatorname{ag}\left(e_{1}\right)+b g\left(e_{2}\right) \mid a, b \in \mathbb{Z}\right\} \\
& L \subseteq g L \Leftrightarrow e_{1} \text { and } c_{2} \in g L \text {. } \\
& \left.\begin{array}{l}
e_{1}=a g\left(e_{1}\right)+b g\left(e_{2}\right) \\
e_{2}=c g\left(c_{1}\right)+d g\left(e_{2}\right)
\end{array}\right] \quad \text { fo } a_{1} b_{1}, \partial \in \mathbb{R} . \\
& g L \leq L ? \\
& \text { (9) } u=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \\
& g\left(e_{1}\right)=\frac{1}{a d-b c}\left(d e_{1}-b e_{2}\right) \\
& g\left(e_{2}\right)=\frac{1}{a d-b c}\left(-c e_{1}+a e_{2}\right) \quad u \operatorname{has} \quad \mathbb{Z}-\operatorname{colff} s \\
& u^{-1} \text { has } \\
& u^{-1}=\frac{1}{\Delta}\left(\begin{array}{c}
d-b \\
-c c \\
-c
\end{array}\right) \quad \Delta=a \partial-b c . \\
& \operatorname{det}\left(u u^{-1}\right)=1 \\
& \operatorname{det}(u) \operatorname{det}\left(u^{-1}\right)=1 \quad \begin{array}{ll}
& g \in G L_{2}(I) \\
\operatorname{deff}()= \pm 1
\end{array}
\end{aligned}
$$

Crystallography

Crystals are objects whose underlying atoms or molecules are organized in a lattice structure. Two such crystals are equivalent if there is a Euclidean symmetry $g \in E(3)$ that transforms one into another.

One can classify crystals by giving the subgroup of $E(3)$ consisting of Euclidean symmetries that preserve it. This is called the symmetry group of the crystal. One can show that there are 230 possible such subgroups of $E(3)$ and thus 230 different classes of crystals.

To get a feel for this we will look at "crystals" in 2-dimensions.

An example from Escher

This image is taken from the book Fantasy and Symmetry, by Caroline MacGillavry, Abrams Publishers, NYC, 1976.

Figure 1: Escher

Another example

This image is taken from the website Plane Symmetry at www.york.ac.uk/depts/maths/histstat/symmetry/welcome.htm

Wallpaper groups
Remember that elements of $E(2)$ are pairs (A, a) where A is an orthogonal matrix (hence a rotation or a reflection) and a is a vector in \mathbb{R}^{2}. The pairs (1,@) form the translation subgroup T isomorphic to \mathbb{R}^{2}. There is a surjective homomorphism

$$
\text { trangddms } E(2) \xrightarrow{\pi} O(2)
$$

$$
(A, a)\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

that sends (\widehat{A}, a) to A.

$$
\begin{gathered}
(A, a)(B, b) \\
=(A B, A b+a)
\end{gathered}=\underset{a}{A}\left[\begin{array}{l}
x \\
y
\end{array}\right]+a
$$

Definition: If H is a subgroup of $E(2)$, the translation subgroup of H is $H \cap T$ and the space group of H is the image of H in $O(2)$ under this homomorphism.

$$
\begin{aligned}
& H \subseteq E(2) \\
& H \cap T \quad \pi(H) \subseteq O(2)
\end{aligned}
$$

Definition: A subgroup H of $E(2)$ is called a wallpaper group or a plane group if the translations $H \cap T$ in H form a lattice in \mathbb{R}^{2} and the space group of H is finite.

Another look at Escher

Another look at the commas
Selene
a shaft laftright b shift up/aown μ

$$
\operatorname{cub}\left[\begin{array}{l}
x \\
y
\end{array}\right]=a r\left[\begin{array}{c}
x \\
y-1
\end{array}\right]
$$

$$
\begin{aligned}
& a\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x+1 \\
y
\end{array}\right] \quad a b=b a \\
& b\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x \\
y+1
\end{array}\right] \\
& M\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
1-x \\
y
\end{array}\right]
\end{aligned}
$$

$$
a b=b a l
$$

$$
\begin{aligned}
& =\left[\begin{array}{c}
-x \\
y+1
\end{array}\right] \backslash \\
& b d\left[\begin{array}{l}
x \\
y
\end{array}\right]=b\left[\begin{array}{c}
1-x+1 \\
y
\end{array}\right]=\left[\begin{array}{c}
1-x \\
y+1
\end{array}\right] \\
& \operatorname{Ma}^{-1}\left[\begin{array}{l}
x \\
7
\end{array}\right]=M\left[\begin{array}{c}
x-1 \\
y
\end{array}\right]=\left[\begin{array}{c}
1-(x-1) \\
y
\end{array}\right] \\
& =\left[\begin{array}{c}
2-x \\
y
\end{array}\right] \\
& \left.a d f=\begin{array}{l}
x \\
y
\end{array}\right]=a\left[\begin{array}{c}
1-x \\
y
\end{array}\right]=\left[\begin{array}{c}
2-x \\
y
\end{array}\right]=\operatorname{ar}^{2}=e \\
& \mu a^{-1}=a c \mu \\
& 9 \\
& p+g_{p}=\mathbb{T}_{2}
\end{aligned}
$$

The full list

This is Chart 5, from "The Plane Symmetry Groups: Their Recognition and Notation" by Doris Schattschneider, American Mathematical Monthly, Jun-Jul 1978, Vol. 85, No. 6, pp 439-450. This article also contains pictures illustrating all 17 patterns.

generating region. A minimal set of generators is shit
lattice unit translation vectors is shown at the right.

Another Escher (pg symmetry)

pg

For a proof that there are exactly 17 possibilities see The 17 plane symmetry groups, by RLE Schwarzenberger, The Mathematical Gazette, Volume 58, No. 404, June 1974, pp. 123-131.

But neither the passive contemplation of wallpaper patterns, nor the passive contemplation of abstract definitions, is mathematics: the latter is above all an activity in which definitions are used to obtain concrete results.

A partial result

Proposition: Suppose the plane group has no reflections or glide reflections. Then there are only 5 possibilities classified by whether or not the point group is \mathbb{Z}_{n} for $n=1,2,3,4,6$.

Figure 12.21. Types of lattices in \mathbb{R}^{2}

Lemma: A lattice contains a shortest vector.
L a lattice
$R L \subseteq L$
Know go of rotators is cycle gevearded by a rota through $2 \pi / n$ radians pa $n=1,2, \ldots$.
R be rotation through $2 \pi / n$.
t shortest vector.

$$
\begin{aligned}
& \text { Rt } \boldsymbol{Q}_{t \in L}^{\in L} R t-t \in L \\
& \|R t\|^{2}=\|t\|^{2} \\
& \|R t-t\|^{2} \geqslant\|t\|^{2} \\
& \|R t\|^{2}-2\langle R t, t\rangle+\|t\|^{2} \geqslant\|t\|^{2} \\
& \|t\|^{2}=\|t\|^{2}+\|t\|^{2}-\|t\|^{2} \geqslant 2\langle R t, t\rangle=2\|R t\|\|t\| \cos \theta \\
& =2\|t\|^{2} \cos \theta \\
& \cos \theta \leq \frac{1}{2} \\
& \cos \frac{2 \pi}{n} \leq \frac{1}{2} \quad n=1,2,3,45
\end{aligned}
$$

$\cos \frac{2 \pi}{s} \leq \frac{1}{2}$ so that 14 not a contradict..

