The Euclidean group
Definition: The Euclidean group $E_{n}(\mathbb{R})$ is the group of distance preserving maps $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$; that is, maps such that $\| f(x)$ $f(y)\|=\| x-y \|$ for all pairs of points x, y. Such a map is called an isometry.

$$
\|f(x)-f(y)\|^{2}=\|x-y\|^{2}
$$

Definition: Fix a vector a. The map $T(x)=x+a$ is an isometry called a translation.

$$
\begin{array}{ll}
x \in \mathbb{R}^{n} \quad a \in \mathbb{R}^{n} & a \neq 0 \\
T(x)=x+a & T(0)=a
\end{array}
$$

$$
\begin{aligned}
& \|T(x)-T(y)\|^{2} \\
& \quad=\|x+a-(a+y)\|^{2}=\|x-y\|^{2} .
\end{aligned}
$$

Proposition: An isometry that carries the origin to the origin is given by an orthogonal matrix.
Assume $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an isornely

$$
f(0)=0
$$

(1) $\langle f(x), f(y)\rangle=\langle x, y\rangle$

$$
\left.\begin{array}{rl}
& \|f(x)-f(y)\|^{2}
\end{array}=\|x-y\|^{2}\right) ~\|f(x)\|^{2}=\|x\|^{2} .
$$

$$
\begin{aligned}
\langle f(x)-f(y), f(x)-f(y)\rangle & =\|f(x)\|^{2}-2\langle f(x), f(y)\rangle+\|f(y)\|^{2} \\
\langle x-y, x-y\rangle & =\|x\|^{2}-2\langle x, y\rangle-1\|y\|^{2}
\end{aligned}
$$

so $\langle f(x), f(y)\rangle=\langle x, y\rangle$.
(7) $e_{1, \ldots, e_{n}}$ is an orthonamal basis
$f\left(c_{1}\right), \ldots, f\left(e_{n}\right)$ is too. $\left\langle f\left(e_{i}\right), f\left(e_{j}^{i}\right)\right\rangle=\left\langle e_{i}, e_{j}^{n}\right\rangle= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}$

$$
\begin{aligned}
& x=\sum x_{i} e_{i} \\
& \begin{aligned}
& f(x) \sum \sum_{i=1}^{n}\left\langle f(x), f\left(e_{i}\right)\right\rangle f\left(e_{i}\right) \\
&\left\langle f(x)-\sum_{i=1}^{n}\left\langle f(x), f\left(e_{i}\right)\right\rangle f\left(e_{i}\right), 0 f\left(e_{i}^{i}\right)\right\rangle \\
&=0
\end{aligned} \\
& f(x)=\sum_{i=1}^{n}\left\langle x_{i}, e_{i}\right\rangle f\left(e_{i}\right)=\sum_{i=1}^{n} x_{i} f\left(e_{i}\right) . \\
& f\left(\sum x_{i} e_{i}\right)=\sum x_{i} f\left(e_{i}\right) \quad \text { so } f \text { is linear. } .
\end{aligned}
$$

f is given by o $f(x)=A x$ for an athogaral A.

The Euclidean group consists of pairs (A, a) where A is an orthogonal matrix and, if $x \in \mathbb{R}^{n}$, then

$$
f(0)=a
$$

$$
\tilde{f}(x)=f(x)-a
$$

$$
\begin{aligned}
& f(x)=f(x) \\
& \tilde{f}(x) \text { is an isawehy }
\end{aligned}
$$ that fixes 0 .

- The multiplication $(A, \underline{a})(B, \underline{b})=(\underline{A B}, A b+a)$.

$$
\tilde{f}(x)=A x
$$

$$
\begin{aligned}
(B, b) x= & B x+b \\
(A, a)(B x+b)= & A(B x+b)+a \\
& =A B x+A b+a
\end{aligned}
$$

- The group of translations T consisting of elements $(\underset{-}{1}, a)$ in $E(n)$ is a normal subgroup isomorphic to \mathbb{R}^{n}.

$$
(1, a)(1, b)=1 \cdot 1+1 . b+a=b+a=a+b
$$

- The quotient $E(n) / T$ is $O(n)$.

$$
\begin{aligned}
& E(n) \rightarrow O(n) \\
& f((A, C)(B, b))=f((A B, A b+a)) \\
& \text { f. }(A, a) \rightarrow A \cdot \\
& =A B \\
& \operatorname{Ke}(y)=T \\
& T \text { is normal } \\
& \begin{array}{c}
E(n) \xrightarrow{f} O(n) \\
V_{E(n) / /} \quad /
\end{array} \\
& =f((A, a)) \dot{f}((B, b))
\end{aligned}
$$

The plane group

The group $E(2)$ contains four basic types of elements:

- translations
- rotations
- reflections
- glide reflections

Definition: Two regions X, Y in \mathbb{R}^{2} are congruent if and only if there is a $g \in E(2)$ such that $g X=Y$.

$$
\begin{aligned}
& \text { Euclidean geovely = "study of properties } \\
& \text { invariant by actur of } E(2) \text { ". }
\end{aligned}
$$

Finite subgroups of the plane group
Proposition: The only finite subgroups of $E(2)$ are isomorphic to \mathbb{Z}_{n} or D_{n} for $n \geq 1$.
(1) $H \subseteq E(2)$ finile
$\left.E(2): \begin{array}{c}\text { translatus } \\ \text { glde trangecins } \\ \text { refleclus }\end{array}\right\}$ have unfiude ader. rotations
evey $k \in H$ flues orighn.
So $\quad H \leq O(2) \subseteq E(2)$

$$
h \in H \quad h=(A, a) \quad a=0 .
$$

(2) ES H is a finie subaroup of $O(2)$.

$$
=1
$$

$$
\begin{aligned}
& S_{1}(2) \subseteq O(2) \\
& s(2)=\left\{R_{\theta}\right\} \text {. } \\
& \left\{\left.E_{E}\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \right\rvert\, \theta \in[0,2 \pi)\right\} \text { rokinions } T=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \in O(2) \\
& O(2)=\operatorname{SO}(2) \text { UTSO(2). } \\
& T R_{\theta} T^{-1}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \\
& \left(T R_{\theta}\right)\left(T R_{\theta}\right) \quad=\left(\begin{array}{l}
\cos \theta \sin \theta \\
-\sin \theta \\
\cos \theta
\end{array}\right)=R_{-\theta} \\
& =T R_{\theta} T R_{\theta}=T^{2} R_{-\theta} R_{\theta}
\end{aligned}
$$

$$
H \subseteq O(2)
$$

(1) $H \subseteq S O(2)$ has no reflectms.

$$
H=\left\{R_{\theta}\right\} \quad H \text { finite. }
$$

Among R_{θ} there must be a smallest angle θ. That $\theta=\frac{2 \pi}{n}$.

$$
R_{\theta}^{n}=R_{n-\frac{2 \pi}{n}}=R_{2 \pi}=R_{0}
$$

$$
H \simeq \mathbb{Z}_{n} .
$$

(2) H contains a rifectm $V=T R_{\varphi}$

$$
\begin{aligned}
& H \cap S O(2)=\left\{1, R_{\theta}, R_{(\theta)}, \ldots, R_{(n-1) \theta}\right\} \\
& H=\left\{\begin{array}{l}
1,=,=-R_{(n-1) \theta}, \\
\left.V, V R, V R^{2}, \ldots R^{n-1}\right\}
\end{array} \begin{array}{l}
V^{2}=1 \\
V R V^{-1}=R^{-1} \\
R^{n}=e
\end{array}\right\}
\end{aligned}
$$

