Quick review of linear algebra

Matrices yield linear maps

A map $T : \mathbb{R}^n \to \mathbb{R}^m$ is *linear* if f(ax + by) = af(x) + bf(y) for all $x, y \in \mathbb{R}^n$ and all $a, b \in \mathbb{R}$. f(ax) = af(x) + bf(y) for all f(ax) = af(x) + bf(y) for all f(ax) = af(x)

An $m \times n$ matrix A yields a linear map from \mathbb{R}^n to \mathbb{R}^m via matrix $x \mapsto Ax.$ A maximatrix man nation $A = \begin{bmatrix} x_1 \\ y_2 \\ x_1 \end{bmatrix} = \begin{bmatrix} x_1 \\ y_2 \end{bmatrix} e \mathbb{R}^m$ multiplication $x \mapsto Ax$.

Examples

• The identity matrix/identity linear map from \mathbb{R}^n to itself.

$$f: \mathbb{R}^n \to \mathbb{R}^n \qquad \begin{pmatrix} \cdot & 0 \\ 0 & \cdot \\ 0 & \cdot \end{pmatrix}$$

• The zero map from
$$\mathbb{R}^{n} \to \mathbb{R}^{m}$$

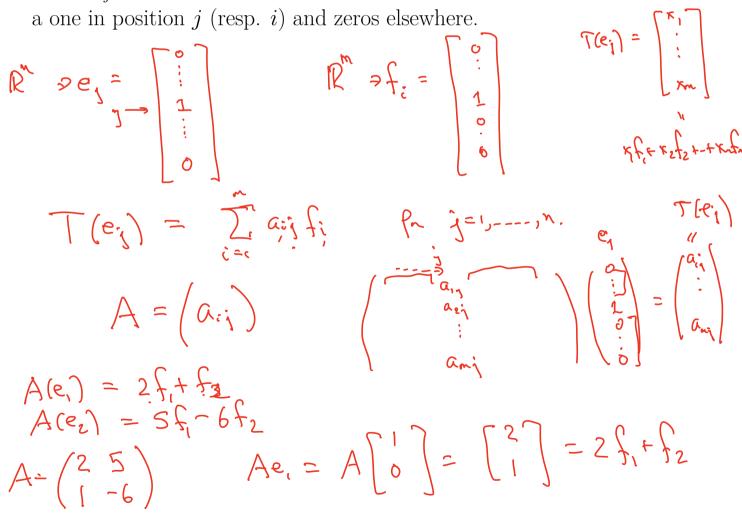
 $f: \mathbb{R}^{n} \to \mathbb{R}^{m}$ $f(x) = 0$ for all x
 $\bigwedge \begin{pmatrix} 0 & \cdots & 0 \\ 0 & 0 & 0 \end{pmatrix}$
• The rotation matrix $M(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$
 $\bigwedge (e) \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos \theta \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$
 $\bigwedge (e) \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$
 $\bigwedge (e) \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta \\ \cos \theta \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$

Every linear map comes from a matrix

Given a linear map $T: \mathbb{R}^n \to \mathbb{R}^m$, we can associate to it an $m \times n$ matrix A with entries (a_{ij}) by computing

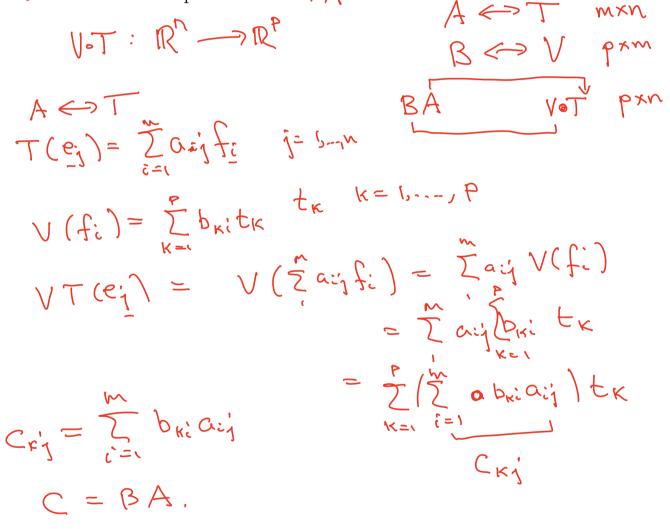
$$T(\mathbf{e}_j) = \sum_{i=1}^m a_{ij} \mathbf{f}_i$$

where \mathbf{e}_i and \mathbf{f}_i are the *n*- and *m*- dimensional column vectors with a one in position j (resp. i) and zeros elsewhere.



Matrix Multiplication is composition of linear maps

If $T : \mathbb{R}^n \to \mathbb{R}^m$ and $V : \mathbb{R}^m \to \mathbb{R}^p$ are linear maps with associated matrices A and B, then the matrix associated to the composition $\bigvee \mathcal{I} \not \not \not i$ is the matrix product $A \not \not i$. $B \land f$



A linear map is bijective if its matrix is invertible

• If $T : \mathbb{R}^n \to \mathbb{R}^n$ is bijective then its inverse is also linear and the associated matrix is the inverse matrix A^{-1} . Conversely if the associated matrix is invertible then T is bijective. In particular the inverse of a bijective linear map is bijective. In $\mathcal{L}_{\mathcal{L}} = \mathcal{L}_{\mathcal{L}}$

A matrix is invertible if and only if it has nonzero determinant

The inner product (dot product)

Definition: The Euclidean inner product on \mathbb{R}^n is the dot product

$$(\sum_{i=1}^{n} a_{i} \mathbf{e}_{i}) \cdot (\sum_{i=1}^{n} b_{i} \mathbf{e}_{i}) = \sum_{i=1}^{n} a_{i} b_{i}.$$

$$(3, 5) \cdot (2, 7)$$
If $x, y \in \mathbb{R}^{n}$ this is also written $\langle x, y \rangle$.
$$(3, 5) \cdot (2, 7)$$

$$= 3 \cdot 2 + 5 \cdot 7$$

$$\leq x, y \rangle = \times \cdot y$$

$$= 41$$

Properties of the inner product

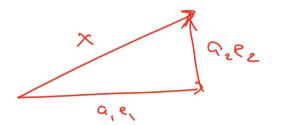
Proposition: The inner product is:

• symmetric, so
$$\langle x, y \rangle = \langle y, x \rangle$$

 $(zaki) \cdot (zb; Pi) = zaib;$

• positive definite, so $\langle x, x \rangle \ge 0$ for all x and is zero only if x = 0.

 $\langle x, x \rangle = \sum a_i^2 > 0$ $x = \sum a_i^2 = 0 \iff all = 0$ $\iff x = 0$ Given a vector x, the quantity $x \cdot x = ||x||^2$ is called the norm of x; geometrically it is the length of the vector x.



 $\|\chi\|^2 = q_1^2 + q_2^2$

Given two vectors x and y, the quantity $(x - y) \cdot (x - y) = ||x - y||^2$ is the square of the Euclidean distance between x and y.

