Quick review of linear algebra

Matrices yield linear maps

$$
f(x+y)=f(x)+f(y)
$$

A map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear if $f(a x+b y)=a f(x)+b f(y)$ for all $x, y \in \mathbb{R}^{n}$ and all $a, b \in \mathbb{R} . \quad f(a x)=a f(x)$

An $\underline{m} \times n$ matrix A yields a linear map from \mathbb{R}^{n} to \mathbb{R}^{m} via matrix multiplication $x \mapsto A x$. A m xn maticic

Examples

$$
\begin{array}{ll}
\text { A } m \times n \\
x \in \mathbb{R}^{n}
\end{array} \quad x=\left[\begin{array}{c}
m \times t r c x \\
x_{1} \\
\vdots \\
m_{n}
\end{array}\right] \quad A x \times n \times 1 \rightarrow\left[\begin{array}{c}
m \times 1 \\
y_{1} \\
y_{n}
\end{array}\right] \in \mathbb{R}^{m}
$$

- The identity matrix/ identity linear map from \mathbb{R}^{n} to itself.

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \quad\left(\begin{array}{ccc}
\ddots & 0 \\
0 & 0 \\
0 & & 1
\end{array}\right)
$$

- The zero map from $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

$$
\begin{aligned}
& f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \quad f(x)=0 \text { fr all } x \\
& \max \left(\begin{array}{cc}
0 & \cdots \\
\vdots & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

- The rotation matrix $\left.M(\theta)=\left(\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right)\right)$

$$
M(\theta)\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right] \quad \mu(\theta)\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-\sin \theta \\
\cos \theta
\end{array}\right]
$$

$$
\cos \theta \hat{\imath}^{2}+\sin \theta \hat{\jmath}_{1}^{\operatorname{rod}^{2} \hat{\jmath} \theta} \hat{i}=\left[\begin{array}{l}
1 \\
\theta
\end{array}\right]
$$

Every linear map comes from a matrix
Given a linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, we can associate to it an $m \times n$ matrix A with entries $\left(a_{i j}\right)$ by computing

$$
T\left(\underline{\mathbf{e}}_{j}\right)=\sum_{i=1}^{m} a_{i j} \mathbf{f}_{i}
$$

where \mathbf{e}_{j} and \mathbf{f}_{i} are the n - and m - dimensional column vectors with a one in position j (resp. i) and zeros elsewhere.

$$
\begin{aligned}
& \mathbb{R}^{n} \text { vt }=\left[\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right] \\
& \mathbb{R}^{m} \Rightarrow f_{i}=\left[\begin{array}{l}
0 \\
\vdots \\
1 \\
0 \\
0
\end{array}\right] \\
& T\left(e_{j}\right)=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{m}
\end{array}\right] \\
& x f_{1}+x_{2} f_{2} t+x+f_{n}^{\prime} \\
& T\left(e_{j}\right)=\sum_{i=1}^{m} a_{i j} f_{i} \quad \rho_{n} \quad j=1, \ldots, n . \quad e_{i} \quad T\left(e_{i}\right) \\
& A=\left(a_{i j}\right) \\
& A\left(e_{1}\right)=2 f_{1}+f_{2} \\
& A\left(e_{2}\right)=S f_{1}-6 f_{2} \\
& A=\left(\begin{array}{cc}
2 & 5 \\
1 & -6
\end{array}\right) \quad A e_{1}=A\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right]=2 f_{1}+f_{2}
\end{aligned}
$$

Matrix Multiplication is composition of linear maps
If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $V: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ are linear maps with associated matrices A and B, then the matrix associated to the composition $V 丁$ is the matrix product $B A$

$$
\begin{aligned}
& V 0 T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p} \\
& A \longleftrightarrow T \\
& T\left(e_{j}\right)=\sum_{i=1}^{n} a_{i j} f_{i} \quad j=1, \ldots, n \\
& A \longleftrightarrow T \quad m \times n \\
& B \leftrightarrow V p \times m \\
& B A \quad V \cdot T \\
& V\left(f_{i}\right)=\sum_{k=1}^{p} b_{k i} t_{k} \quad t_{k} \quad k=1, \ldots, p \\
& V T\left(e_{\underline{1}}\right)=V\left(\sum_{i}^{m} a_{i j} f_{i}\right)=\sum_{i}^{m} a_{i j} V\left(f_{i}\right) \\
& =\sum_{1}^{m} a_{i j} \sum_{k=1}^{p} b_{k i} t_{k} \\
& c_{k_{j}^{\prime}}=\sum_{i=1}^{m} b_{k i} a_{i j}^{\prime} \\
& C=B A \text {. }
\end{aligned}
$$

A linear map is bijective if its matrix is invertible

- If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is bijective then its inverse is also linear and the associated matrix is the inverse matrix A^{-1}. Conversely if the associated matrix is invertible then T is bijective. In particular the inverse of a bijective linear map is lInear.

A matrix is invertible if and only if it has nonzero determinant

The inner product (dot product)
Definition: The Euclidean inner product on \mathbb{R}^{n} is the dot product

$$
\left(\sum_{i=1}^{n} a_{i} \mathbf{e}_{i}\right) \cdot\left(\sum_{i=1}^{n} b_{i} \mathbf{e}_{i}\right)=\sum_{i=1}^{n} a_{i} b_{i} .
$$

$$
\begin{gathered}
(3,5) \cdot(2,7) \\
=3 \cdot 2+5 \cdot 7 \\
=41
\end{gathered}
$$

If $x, y \in \mathbb{R}^{n}$ this is also written $\langle x, y\rangle$.

$$
\langle x, y\rangle=x \cdot y
$$

Properties of the inner product
Proposition: The inner product is:

- symmetric, so $\langle x, y\rangle=\langle y, x\rangle$

$$
\begin{aligned}
& \left(\sum a_{i} b_{i}\right) \cdot\left(\sum b_{i} p_{i}\right)=\sum a_{i} b_{i} \\
& \langle x+y, z\rangle=\langle x, 2\rangle+\langle j, z\rangle
\end{aligned}
$$

- bilinear, so $\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle$ and $\langle a x, y\rangle=a\langle x, y\rangle$ for $x, y \in \mathbb{R}^{n}$ and $a \in \mathbb{R}$.

$$
x \cdot(y+z)=x \cdot y r x \cdot z
$$

$$
\sum a_{i}\left(b_{i}+c_{i}\right)=\sum a_{i} b_{i}+\sum a_{i} c_{i}
$$

$$
\text { Co } \begin{aligned}
x & =\sum a_{i}+! \\
y & =\sum b_{i} e_{1} \\
z & =\text { Eciei }
\end{aligned}
$$

$$
a x \cdot y=a \sum a_{i} b_{i}
$$

- positive definite, so $\langle x, x\rangle \geq 0$ for all x and is zero only if $x=0$.

$$
\begin{aligned}
& \langle x, x\rangle=\sum a_{i}^{2} \geqslant 0 \\
& x=\sum a_{i} e_{i} \quad \sum a_{i}^{2}=0 \Leftrightarrow \text { all } a_{i}^{2}=0 \\
&
\end{aligned} \quad \Leftrightarrow \quad x=0 .
$$

Given a vector x, the quantity $x \cdot x=\|x\|^{2}$ is called the norm of x; geometrically it is the length of the vector x.

$$
\|x\|^{2}=a_{1}^{2}+a_{2}^{2}
$$

Given two vectors x and y, the quantity $(x-y) \cdot(x-y)=\|x-y\|^{2}$ is the square of the Euclidean distance between x and y.

