Isomorphism Theorems

The canonical homomorphism

Let G be a sebgroup and H be a normal subgroup of G. Then the $\phi: G \rightarrow G/H$ $(g, H)(g_z H) = g_y g_z H \leftarrow$ map defined by $\phi(g) = gH$ is a homomorphism called the *natural homo*morphism or the canonical homomorphism. $\mathcal{P}(g) = q H$ **Examples** $\varphi(g_1g_2) = g_1g_2 H$ $=(g_{1},H)g_{2}H)$ = $g(s_{1})g(s_{2})$ • $\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} = \mathbb{Z}_n$ n > 1 a \leftarrow a \leftarrow a \leftarrow i. $K(g) = \{g(g) = H\}$ - Sq [qH=Hg • $S_n \rightarrow S_n/A_n = \mathbb{Z}_2$ $g(\sigma) = \sigma A_n$ $A_n \geq 2 cven per f$ (ken(g) = f). $TA_n = 2 odd permeg$ (ken(g) = f). $A_n \geq 2 cven per f$ (ken(g) = f). ={9 € HY • $\operatorname{GL}_2(\mathbb{R}) \to \operatorname{GL}_2(\mathbb{R})/\operatorname{SL}_2(\mathbb{R}) = \mathbb{R}^{\times}$ gShick) = 20 (det (n) = det (g?)

The first isomorphism theorem

Theorem: (First isomorphism theorem) Suppose

- $\psi: G \to H$ is a group homomorphism
- K is the kernel of ψ
- $\phi: G \to G/K$ is the canonical homomorphism.

Then there exists a unique isomorphism $\eta: G/K \to \psi(G) \subset \underline{H}$ such that $\psi = \eta \phi$.

Figure 1: First isomorphism theorem diagram

The first isomorphism theorem (in a slightly different context) is due to Emmy Noether in her paper Abstrakter Aufbau der Idealtheorie in algebraischen Zahl- und Funktionkoerpern (Abstract Foundations of Ideal Theory in Number Fields and Function Fields), Math. Annalen, 1927. In words: every homomorphism ψ from G to H is a composition of two steps:

- first, you take the natural map from G to the quotient G/K where K is the kernel of ψ ;
- then you have an isomorphism from G/K to a subgroup of H.

Or, put another way, the image of a homorphism of a group G is isomorphic to a quotient of G.

Another look at the sign map $S_n \to \mathbb{Z}_2$. $\psi(\sigma) = 0$ σ even $\psi(\sigma) = 1$ σ $\sigma^2 \partial^2$ K = ken(q) = An. $S_n = K_2$ $in(A) = \mathbb{Z}_2$ $S_n = K_2$ Another look at the determinant map from $\operatorname{GL}_2(\mathbb{R}) \to \mathbb{R}^{\times}$.

Let G be a group and let $g \in G$ be an element. Consider the homomorphism

given by
$$\varphi(g) = g^n$$
.
 $Z \xrightarrow{\qquad 1} (g) = g^n$ $g \in G$
 $K_{0}(Y) = \{n \mid g^n = e\}$ $(moge(Y))$
 $= 2g^n \mid n \in \mathbb{Z}\}$
 $g^n = e \Rightarrow order(g) \mid n$ ($n \in \mathbb{Y}$ has infinite order).
 $g^n = e \Rightarrow order(g) \mid n$ ($n = g$ has infinite order).
Suppose g has finite order.
 $Ker(Y) = order(g) \mid Z$.
 $order(g) \mid Z$.
 $g^n = n$
 $Z \mid order(g) \mid Z$.

Another look at the map $\mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ when m|n.

Z/127 -> Z/S7 372/1272 = Z/1272 11 yer (4) $a+12T \longrightarrow a+3Z$ Z/12Z ~~ Z/SZ (2/127) (37/127)

Theorem: (First isomorphism theorem) Suppose

- $\psi: G \to H$ is a group homomorphism
- K is the kernel of ψ
- + $\phi:G\to G/K$ is the canonical homomorphism.

Then there exists a unique isomorphism $\eta: G/K \to \psi(G) \subset H$ such that $\psi = \eta \phi$.

Figure 1: First isomorphism theorem diagram

Wart:
$$\Psi(g) = \chi g(g)$$

Df: $\chi(gK) = \Psi(g) \in H.$
Cleck that this γ works.
 $\Im \chi(gK) = \chi(g'K) = fgK = g'K ?$
 $gK = g'K$ the $\bigoplus g = g'K fa K \in K.$
 $\eta(gK) = \Psi(g) = \Psi(g'K) = \Psi(g')\Psi(K) = \Psi(i')$
 $\chi(g'K) = \Psi(g) = \chi(g_{1}g_{2}K) = \Psi(g_{1}g_{2})$
 $\chi(g'K) = \Psi(g')$
 $\chi(g,K) = \Psi(g_{2}K) = \Psi(g_{1}g_{2})$
 $\chi(g,K) = \chi(g_{2}K) = \Psi(g_{1}g_{2})$
 $\chi(g,K) = \chi(g_{2}K) = \Psi(g_{1}g_{2})$
 $\chi(g,K) = \chi(g_{2}K) = \Psi(g_{2}K)$
means $\Psi(g_{1}) = \Psi(g_{2})$
 $\Psi(g_{1}K) = \Psi(g_{2}K) = \Psi(g_{2}K)$
 $\mu(g_{1}) = \Psi(g_{2}K) = \Psi(g_{2}K)$