
Homomorphisms: Basics

Definition: Suppose G and H are groups. A homomorphism
„ : G æ H is a function that satisfies the property

„(g1g2) = „(g1)„(g2)

for all g1, g2 œ G. An isomorphism is a homomorphism that is
bijective.

A homomorphism is a map that gives a partial relation between the
structure of G and H .
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Examples

• Let G = Sn and H = Z2. Define

„(‡) =
Y
__]

__[

0 if ‡ is an even permutation
1 if ‡ is an odd permutation

Then „ is a homomorphism.
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• Let G = GL2(R) and let H = R◊. Then

„(g) = det(g)

is a homomorphism.
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• Let H be any group and let h œ H be an element. Define
„ : Z æ H by „(n) = h

n. Then „ is a homomorphism.
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• Let G = R and H = T, the group of complex numbers of norm
1 with multiplication. Then the map

„(r) = cis(r) = cos(r) + i sin(r)

is a homomorphism.
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