Simple groups

Definition: A group G is simple if its only *normal* subgroups are the trivial group and the entire group G.

Example: The groups \mathbb{Z}_p are simple when p is prime.

Proposition: The only abelian simple groups are the groups \mathbb{Z}_p for p prime. \mathbb{Z}_p , \mathbb{Z}_3 ,

Rod: In an alelian group, every subgroup is normal. (gH5-1=H is adothatic since gH5-1=gg-1H=H). (gH5-1=H is adothatic since gH5-1=gg-1H=H). (gH5-1=H is adothatic since gH5-1=gg-1H=H). (gH5-1=H). (gH5-1=H).

even permutations in Sr.

L

The alternating group \underline{A}_n is simple $n \ge 5$.

For simplicity we will only prove that A_5 is simple. But first notice that:

• A_3 is the group of rotations in S_3 , so it's abelian and isomorphic to \mathbb{Z}_3 , which is simple.

$$A_3 = \{e_3(123), (132)\} \leq S_3$$

 $22 R_3 \quad \text{simple and above.}$

• A_4 has 12 elements. The subgroup consisting of

$$= \underbrace{\{e, (12)(34), (13)(24), (14)(23)\}}_{ }$$

is normal so A_4 is not simple.

Proposition: A_5 is simple.

Ansimple for NZS.

Prod: See text. Assure HEAS. Use the fact that acycles generate As force 3-cycles into H Using Conjugation. Linduchon An Fr General Hoblem: Classify all groups. Clarsifi all finik graps Skert: G finile IS HEG is normal: H G G G/H If G simple - Can't ob this, simple groups are the basic blocks of all groups. 3