Examples of Factor Groups

• $G = \underbrace{\operatorname{GL}_2(\mathbb{R})}_{2}$ and $H = \underbrace{\operatorname{SL}_2(\mathbb{R})}_{2}$. $\underline{G/H}$ is isomorphic to \mathbb{R}^{\times} .

• SLite) is normal in
$$GL_{2}(R)$$

To check: if $gecl_{2}(R)$, we must see that $gH_{3}^{-1} = H$.
 $heSL_{2}(R)$ $dlt(n) = l$.
 $gecl_{2}(R)$ $r ghg^{-1} e H$?
 $dlt(ghg^{-1}) = gdt(g)dlt(n)dlt(g)dlt(g) = det(l) = l$
So $gH_{3}^{-1} = H$ and H is normal.
• If geG , if $xegH$ then $det(x) = det(g)$.
Conversing if $x \in G$ with $det(x) = det(g)$.
Conversing if $x \in G$ with $det(x) = det(g)$.
 $Conversing if $x \in G$ with $det(x) = det(g)$.
 $K(x'g) = 1 \in Sl_{2}(R)$ $H = gH$.
 $dl(x'g) = 1 \in Sl_{2}(R)$ $[det(g) = m]$.
 $dt(m) \in R^{*}$. $\binom{m \circ}{0}H = \begin{cases} gecl_{2}(R) [det(g) = m] \\ det(m) = \binom{m \circ}{0} \end{cases}$
 $dt(m) = \binom{m \circ}{0}H$.
 $f(m) = \binom{m \circ}{0}H$.
 $lam: f = an isomorphism.$
 $if f(m) = f(m_{2})$ then $\binom{m_{1} \circ}{0}H = \binom{m_{2} \circ}{0}H$$

which means de
$$\binom{m, 0}{0, 1} = det \binom{m, 0}{0, 1}$$
,
 $m_1 = m_2$. So fingective.
Given gH, let $m = det(g)$.
 $f(m) = \binom{m, 0}{0} H = g H.$
because $ed(\binom{m, 0}{0}^{-1} g) = 1$
Nucline flow is supective.
 $f(m_1) f(m_2) = f(m_1 m_2).$
 $f(m_1) = m_1 H$
 $f(m_2) = m_2 H$
 $f(m_1) f(m_2) = (m_1 H)(m_2 H) = m_1 m_2 H = f(m_1 m_2).$
 $GL_2(R) / SL_2(R) \simeq (R^{\star}.$

• G = Q and $H = \{-1,1\}$. G/H is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$. () how 8 elts $\mathbb{U}_j \pm i \pm j \pm k$ ij = k $H = \{-1,1\}$. $\{1, \pm i \pm j \pm k$ ij = k $H = \{-1,1\}$. $\{1, \pm i \pm j \pm k$ ij = k $H = \{-1,1\}$. $\{1, \pm i \pm j \pm k$ ij = k $H = \{-1,1\}$. $\{1, \pm i \pm j \pm k$ ij = k $H = \{-1,1\}$. $\{1, \pm i \pm j \pm k$ ij = k $H = \{-1,1\}$. $\{1, \pm i \pm j \pm k$ ij = k $H = \{-1,1\}$. $\{1, \pm i \pm j \pm k$ ij = k $(i, H)^2 = -iH = H$ -ieH $iH \rightarrow (i, 0)$ (i, H)(i, H) = kH $H \rightarrow (i, 1)$ (i, H)(i, H) = kH $H \rightarrow (i, 1)$ (i, H)(i, H) = -kH = kH