Products
Definition: Let G and H be groups. The product group $G \times H$ is

Proposition: $G \times H$ is a group.
Proof:

$$
\text { Proof: } \begin{aligned}
&(\underbrace{(g, h)\left(g^{\prime}, h^{\prime}\right)})\left(\left(g g^{\prime \prime}, h^{\prime \prime}\right)\right) \\
&-(g, h)\left(\left(g^{\prime}, h^{\prime}\right)\left(g^{\prime \prime}, h^{\prime \prime}\right)\right) \\
&=\left(g g^{\prime}, h^{\prime}\right)\left(g^{\prime \prime}, h^{\prime \prime}\right) \\
&=\left(\left(g j^{\prime}\right) g^{\prime \prime},\left(h h^{\prime}\right) h^{\prime \prime}\right) \\
&=\left(g\left(g^{\prime} g^{\prime \prime}\right), h\left(h^{\prime} h^{\prime \prime}\right)\right)=(g, h)\left(g^{\prime} g^{\prime \prime}, h^{\prime} h^{\prime \prime}\right) \\
&=(g, h)\left[\left(g^{\prime}, h^{\prime}\right)\left(g^{\prime \prime}, h^{\prime \prime}\right)\right]
\end{aligned}
$$

2) (e, e) is the identry.

$$
\begin{aligned}
& \left(\varepsilon, e_{H}\right)(g, h)=\left(\varepsilon g, e_{H}\right)=(g, h) \\
& (g, h)\left(e_{G}, e_{H}\right)=\left(g e_{G}, h e_{H}\right)=(g, h)
\end{aligned}
$$

3) $(g, h)\left(g^{-1}, h^{-1}\right)=\left(g g^{-1}, h h^{-1}\right)=\left(e_{G}, e_{H}\right)$

Products: Examples

- The space \mathbb{R}^{n} of n-vectors is a group. It is the product

$$
\overbrace{\mathbb{R} \times \cdots \times \mathbb{R}}^{n}
$$

\mathbb{R} adarive group

$$
\begin{aligned}
& \mathbb{R}^{n}=\mathbb{R} \times \mathbb{R} x \ldots \times \mathbb{R} \quad {\left[a_{1}, \ldots, a_{n}\right]+\left[b_{1}, \ldots, b_{n}\right] } \\
&=\left[a_{1}+b_{1}, \ldots . \ldots a_{n}+b_{n}\right] \\
& \text { ideurty }=[0,0,0, \ldots 0] \\
& \text { inverse of }\left[a_{1}, \ldots, a_{n}\right]=\left[-a_{1}, \ldots, a_{n}\right] .
\end{aligned}
$$

- The group \mathbb{Z}_{2}^{n} is the space of $0-1$ vectors with componentwise

$$
\left.\begin{array}{ll}
01 \\
0 & 01 \\
1 & 10
\end{array}\right] \text { exclusive }
$$

- The group $\mathbb{R} \times \mathbb{Z}$ consists of pairs (r, n) with $r \in \mathbb{R}$ and $n \in \mathbb{Z}$, and addition on components.

$$
\begin{aligned}
& \text { and addition on components. } \mathbb{R} \times \mathbb{R} \left\lvert\,= \begin{cases}\{(r, n) \mid v \in \mathbb{R}, n \in \mathbb{Z}\}\end{cases} \right. \\
& \\
& \\
& (\pi,-5)+(14,-2) \\
& 2--2,3
\end{aligned}
$$

$$
\begin{aligned}
& \text { addition. } \\
& \mathbb{Z}_{2}=\mathbb{Z}_{2} \cdots \cdots \times \mathbb{Z}_{2} \\
& a=(0,1,1,0,0, \ldots, 1) \quad b=(1,1,0, \ldots, 0) \\
& a+b=(1,0,1, \ldots) \quad(0,111)+(10,0) \\
& =(1 \mid 01)
\end{aligned}
$$

Products and Orders
Theorem: Let G and H be groups, and let $(g, h) \in G \times H$. If g has finite order r and h has finite order s, then (g, h) has order $\underline{l c m(r, s)}$.

$$
\begin{aligned}
& Z_{4}^{\prime} \times \mathbb{Z}_{4} \\
& 2 \in \mathbb{Z}_{6} \quad \operatorname{arder}(2)=\frac{6}{\operatorname{gco}(2,6)}=\frac{6}{2}=3 \\
& 3 \in \mathbb{Z}_{4} \quad \operatorname{arden}(3)=\frac{4}{\operatorname{gc\partial }(3,4)}=4 \quad \operatorname{lcm}(3,4)=12 \\
& (2,3)^{1} \quad(4,6)=(4,2)^{2} \quad(0,1)^{3} \\
& 1-g<2 \cdot g \\
& (2,0) \quad(4,3)^{5} \quad(6,6)^{6}=(0,2) \\
& (2,1)_{10}^{7}(4,0)_{11}^{8} \quad(0,3) \\
& (2,2) \quad(4,1) \\
& (6,0)=12(3142
\end{aligned}
$$

Proof: $(g, h)^{m}=(\widetilde{g}, \bar{h})(g, h) \cdots(g, h)=\left(g^{m}, h^{m}\right)$
Suppose $(g, h)^{m}=(e, e)$. Then $g^{m}=e$ and $a^{m}=e$. orden(g) $/ m$ and $\operatorname{orden}(h) \mid m$, so m is a common multiple of $\operatorname{archu}(g)=r$ andean $\operatorname{arden}(h)=S$. order is smallest common multiple.

$$
\begin{aligned}
& (g, h)^{\operatorname{lcm}(r, s)} \overline{\text { multiple of }} \\
& =\left(g^{\operatorname{lom}(r, s)}, h^{\operatorname{lcm}(r, s)}\right) \\
& =(e, e)
\end{aligned}
$$

Corollary: Suppose, for $i=1, \ldots, n$, that G_{i} is a group. If

$$
g=\left(g_{1}, \ldots, g_{n}\right) \in \prod_{i=1}^{n} G_{i}
$$

and g_{i} has order r_{i}, then the order of g is the least common multiple of the r_{i}.

$$
\begin{gathered}
\prod_{i=1}^{n} G_{i} \simeq G_{1} \times G_{2} \times \ldots \times G_{n} \\
\left(g_{1, \ldots,} g_{n}\right) \in G_{1} \times \ldots \times G_{n} \\
\left(g_{1, \ldots,} g_{n}\right)^{m}=(e, \ldots, e) .
\end{gathered}
$$

order $\left(g_{i}\right) / m$ fa all: so m has to be a canon mult-ple. Smallest possible common multiple is $L=l \mathrm{~cm}$ (organ $\left(s_{1}\right)_{1}$, order g_{2}), - order $\left(g_{\mathrm{a}}\right)$)

$$
\left(g_{1, \ldots}, g_{n}\right)^{L}=\left(g_{1}^{2}, \ldots g_{n}^{L}\right)=\left(e_{1}, \ldots, e\right) \text {. }
$$

Since L is a multiple of $\operatorname{oran}\left(g_{i}\right)$

$$
\begin{aligned}
& \text { since } g_{i}^{L}=g_{i}^{\text {arden }(g i)} \text { ? } \\
G= & \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5}
\end{aligned}
$$

$$
(1,1,1) \in G
$$

orders are 2,3 , and S $(1,1,1)$ has $\operatorname{aden} 30, \operatorname{lcm}(2,3,5)=30$

$$
\begin{aligned}
& G=\mathbb{Z}_{4} \times \mathbb{Z}_{6} \times \mathbb{Z}_{10} \\
& (1,1,1)
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{U}_{10} \quad \operatorname{lcm}(4,6,10)=60 \\
& \text { order }(1,1,1)=60 .
\end{aligned}
$$

Theorem: The groups $\mathbb{Z}_{n} \times \mathbb{Z}_{m}$ and $\mathbb{Z}_{n m}$ are isomorphic if and only if $\operatorname{gcd}(m, n)=1$.

Egg. $\mathbb{Z}_{3} \times \mathbb{Z}_{5} \stackrel{\mathcal{C}^{\text {ssomophic. }}}{\approx} \mathbb{Z}_{1 s} \quad \operatorname{gcd}(3, s)=1$

$$
\begin{aligned}
& \mathbb{Z}_{4} \times \mathbb{Z}_{7} \simeq \mathbb{Z}_{28} \\
& \mathbb{Z}_{60} \simeq \mathbb{Z}_{404} \times \mathbb{Z}_{15}
\end{aligned}
$$

Proof: (1) every cycle groups of aden n is samophic to \mathbb{Z}_{n}.
it's enough to show that

$$
\mathbb{Z}_{n} \times \mathbb{Z}_{m} \text { is iyclic if gas }(n, m)=1
$$

Take $(1,1) \in \mathbb{Z}_{n} \times \mathbb{Z}_{m}$
what is ts under?
order (c) " \mathbb{Z}_{n} is n order (I) in \mathbb{Z}_{m} is m.
$\operatorname{orden}(1,1)=\operatorname{lcm}(n, m)$.
Since $\operatorname{gcd}(n, m)=1, \quad \operatorname{lcm}(n, m)=n m$.

$$
\begin{aligned}
\operatorname{gcd}(n, m) \operatorname{lcim}(n, n) & =n m . \\
\operatorname{lcm}(n, m) & =\frac{m n}{\operatorname{gcd}(n, m) .} \\
\operatorname{grden}(1,1) & =n m .
\end{aligned}
$$

$\mathbb{Z}_{n} \times \mathbb{Z}_{m}$ has nm elements and ($1, s$) of order $n m$. $\langle(1,1)\rangle \leqslant \mathbb{Z}_{n} \times \mathbb{Z}_{m}$ and both have nom els. so $\langle(1,1)\rangle=\mathbb{Z}_{n} \times \mathbb{Z}_{n} \cong \mathbb{Z}_{n m}$.

Corollary: Every cyclic group is a product of cyclic groups of prime power order. More precisely, given an integer n with prime factorization

$$
\underline{n=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}}
$$

where the p_{i} are distinct primes, then

$$
\begin{aligned}
& 60=2^{2} \cdot 3 \cdot S \quad \mathbb{Z}_{n}=\mathbb{Z}_{p_{1} e_{1}} \times \cdots \times \mathbb{Z}_{p_{k} e_{k}} \\
& \mathbb{Z}_{60} \simeq \mathbb{Z}_{15} \simeq \mathbb{Z}_{3} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5} \\
& 12=2^{2} \cdot 3 \\
& \mathbb{Z}_{12} \simeq \mathbb{Z}_{4} \times \mathbb{Z}_{3} \\
& \text { Pf: }(1,1,1, \ldots .1) \in \mathbb{Z}_{p_{1}}^{e_{1}} \times \ldots \mathbb{Z}_{p_{k}}^{e_{k}} \\
& \quad \text { order }=\operatorname{lcm}\left(p_{1}^{e_{1}}, \ldots, p_{k}^{e_{k}}\right)=p_{1}^{e_{1}} \ldots p_{k}^{e_{k}}
\end{aligned}
$$

$$
\langle(1, \ldots, 1)\rangle \text { has } p_{1}^{e_{1}} \ldots p_{k}^{p_{k}} \text { alts. }
$$

$\leq \mathbb{Z}_{\rho_{1}} \times \ldots \times \mathbb{Z}_{\rho_{k}} e_{k}$ which also has $p_{1}^{p_{1}} \ldots p_{k}^{p_{k}}$ els
So $\mathbb{Z}_{p} e_{1}, x_{-} \cdots \times \mathbb{Z}_{p-c} e_{k}$ is cyclic with n elis so it is \mathbb{Z}_{n} Up to somaphism.

$$
\begin{aligned}
& \mathbb{Z}_{12} \simeq \mathbb{Z}_{4} \times \mathbb{Z}_{3} \\
& (1,1) \in \mathbb{Z}_{4} \times \mathbb{Z}_{3} \\
& f: \mathbb{Z}_{4} \times \mathbb{Z}_{3} \rightarrow \mathbb{T}_{12} \\
& (1,1) \longrightarrow 1 \quad f((1,1)+(1,1))=f(2,2) \\
& (2,2) \longrightarrow 2 \\
& (3,0) \rightarrow 3 \\
& f^{\prime \prime}(1,1)+f(1,1)=2 \\
& (0,1) \rightarrow 4 \\
& (1,2) \rightarrow 5 \\
& (2,0) \rightarrow 6 \\
& (3,1) \rightarrow 7 \\
& (0,2) \rightarrow 8 \\
& (1,0) \rightarrow 9 \\
& (2,1) \rightarrow 10 \\
& (3,2) \rightarrow 11 \\
& (0,0) \rightarrow 12=0
\end{aligned}
$$

