
Products

Definition: Let G and H be groups. The product group G ◊ H is
the cartesian product of G and H with group operation (g, h)(gÕ

, h
Õ) =

(gg
Õ
, hh

Õ).

Proposition: G ◊ H is a group.

1

 

Eiti

Prod if leg h l

gh gin'd gin

gginh g h

egg g chill

g lg g hen'h ll g
a gg h h

Ig.nl 1g h g h

2 e e is the idenhy

e gh eggeh g h

g h CaCa gea hea g h

3 g 4 g sh gg hh ease

soaxtisanoy



Products: Examples

• The space Rn of n-vectors is a group. It is the product
n˙ ˝¸ ˚

R ◊ · · · ◊ R

.

• The group Zn

2 is the space of 0 ≠ 1 vectors with componentwise
addition.

• The group R◊Z consists of pairs (r, n) with r œ R and n œ Z,
and addition on components.
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Products and Orders

Theorem: Let G and H be groups, and let (g, h) œ G ◊ H . If
g has finite order r and h has finite order s, then (g, h) has order
lcm(r, s).
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Corollary: Suppose, for i = 1, . . . , n, that Gi is a group. If

g = (g1, . . . , gn) œ
nŸ

i=1
Gi

and gi has order ri, then the order of g is the least common multiple
of the ri.
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Theorem: The groups Zn ◊ Zm and Znm are isomorphic if and
only if gcd(m, n) = 1.
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Corollary: Every cyclic group is a product of cyclic groups of
prime power order. More precisely, given an integer n with prime
factorization

n = p
e1
1 · · · p

ek
k

where the pi are distinct primes, then

Zn = Z
p

e1
1

◊ · · · ◊ Z
p

ek
k

.
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