Classification results

Theorem: Any infinite cyclic group is isomorphic to \mathbb{Z} .

$$(\mathbb{Z},+)$$
 is infinite cyclic $(\mathbb{Z},+)=\langle 1 \rangle$

Suppose G is infinite and cyclic. Then there is an isomorphism f: Z > G.

Proof: G cyclic =) I g & G so that

G= { gn: ne Z} and all g' are distinct.

$$f(u'+u^{s}) = d_{u} = d_{u}d_{s} = t(\alpha')t(u^{s})$$

$$f(u'+u^{s}) = d_{u}e_{c}$$

For, fis surjecture because every get is = so y_= gm co f(m) = g1.

 $f(n_1) = f(n_2) = f(n_1) = f(n_2)^{-1} = e$.

$$f(n_2) = g^{n_2}$$
 $f(n_1) = g^{n_2}$
 $f(n_2) = g^{n_2}$

oftour g world have finite

Theorem: Any finite cyclic group of order n is isomorphic to \mathbb{Z}_n .

Find f. Zn > G which is an isomorphism.

G= <g>. g a general \rightleftharpoons $g^n = e$ 15 the identity

 $f(\alpha) = g$ $[\alpha+kn] = [\alpha]$

f(a+kn) = a+kn = a(a, k) = a

Enklose no Zron Enkeyen.

9, E F = 3, = gi hr come i

 $f(i) = g^{i}$ $f(i) = g^{i}$ $f(i) = g^{i}$

Inferm.

Suppose: $f(i) = f(i) \implies g' = g' \implies g' = e$

Supprise: 3 () (i-j)

[i] = [j] n Zn

 $f(i+j) = g^{i+j} = g^{i}g^{j} = f(i)f(j)$

U(17) cyclic order 6 querated by 3 ~ 76

Theorem: If p is prime, any group of order p is isomorphic to \mathbb{Z}_p .

Proof: Suppose Ghas performents. p prime.

Take $g \notin G$, $g \notin P$.

Order (g) = P. $G = \{1, 9, 9, \dots, 9^{p-1}\}$ Guche with pelements, G is isomorphic both.

Ze.

Theorem: (Cayley's Theorem) Any group G is isomorphic to a <u>permutation group.</u> If G is finite, it is isomorphic to a subgroup of

 S_n for some n.

Permit hun group is a group whose elements are byective maps $f: X \rightarrow X$ and operation is composition of functions.

o id
$$\rho_1$$
 ρ_2 μ_1 μ_2 μ_3

id id ρ_1 ρ_2 μ_1 μ_2 μ_3
 ρ_1 ρ_2 ρ_2 ρ_2 ρ_2 ρ_3 ρ_4 ρ_5 ρ_5 ρ_6 ρ_7 ρ_8 ρ_8

G group Make G into a group of permutations. Let X=G (as a set). Make a $f: X \rightarrow X$ for each $g \in G$. Define $\lambda_q: \times \longrightarrow \times$ $\lambda_{\eta}(x) = \eta^{\chi}$ g - Jg is an ranaphism. λg and $\lambda g'$ are different if $g \neq g'$.

Suppose $\lambda g = \lambda g'$. Then $\lambda g(e) = \lambda g'(e)$ g = ge g'e=g' 29,92 = 29,0292 $\lambda g_{1}g_{2}(x) = (g_{1}g_{2}x) = g_{1}(g_{2}x) = g_{1}\lambda g_{2}(x)$ $= \lambda^{\delta}(\chi^{\delta}(\chi))$ $=(\lambda_{1}, \lambda_{1})(x).$ $\gamma_{1}: S_{0,1,2,3}$ $\times = \mathbb{Z}_{4}$ \mathbb{Z}_4 $\lambda_0 = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 3 \end{pmatrix}$ $\lambda' = \begin{pmatrix} 0 & 5 & 3 \\ 1 & 5 & 0 \end{pmatrix} \in \chi \qquad (0153)$ $\lambda_2 = \begin{pmatrix} 0 & \sqrt{2} & 3 \\ 2 & 3 & 0 & 1 \end{pmatrix} \qquad (02)(13)$ $\lambda_3 = \left(\begin{array}{ccc}
 0 & 1 & 2 & 3 \\
 3 & 0 & 1 & 2
 \end{array} \right) = \left(0 & 3 & 2 & 1 & 1 \\
 \end{array} \right)$

$$\lambda_{2} \stackrel{?}{=} \lambda_{1} \circ \lambda_{1} \qquad (0) \stackrel{?}{=} \stackrel{?}{=} \lambda_{2} \circ \lambda_{1} \qquad (0) \stackrel{?}{=} \stackrel{?}{=} \lambda_{2} \circ \lambda_{1} \qquad (0) \stackrel{?}{=} \stackrel{?}{=} \lambda_{2} \circ \lambda_{1} \qquad (0) \stackrel{?}{=} \lambda_{2} \circ \lambda_{1} \qquad ($$

$$\mu_{1} = (14)(25)(36)(15)(26)(34) = \beta_{1}$$

$$= (3)(2)(465)$$

$$= (123)(465)$$