Classification results
Theorem: Any infinite cyclic group is isomorphic to \mathbb{Z}.
(\mathbb{Z}, t) is infinite cyclic

$$
(\mathbb{Z},+)=\langle 2\rangle
$$

Suppose G is infinite and cyclic. Then there is a_{n} isomaphism $\quad f: \mathbb{Z} \rightarrow G$.

Proof: G cyclic $\Rightarrow \exists g \in G$ so that $G=\left\{g^{n}: n \in \mathbb{Z}\right\}$ and all g^{n} aredistinct.

$$
\begin{aligned}
f: & \rightarrow G \\
& f(n)=g^{n} \in G . \\
& f\left(n_{1}+n_{2}\right)=g^{n_{1}+n_{2}}=g^{n_{1}} g^{n_{2}}=f\left(a_{1}\right) f\left(n_{2}\right)
\end{aligned}
$$

fra, f is surgective be care every $g_{1} \in G$ is $=$ to $y_{1}=y^{m}$ so $f(m)=g_{1}$.
finjective : $f\left(n_{1}\right)=f\left(n_{2}\right) \Rightarrow f\left(n_{1}\right) f\left(n_{2}\right)^{-1}=e$.

$$
\begin{aligned}
& f\left(n_{2}\right)=g^{n_{2}} \\
& f\left(-n_{1}\right)-\left(g^{-n_{2}}\right)-\left(g^{n_{2}}\right)^{-1} \quad \Rightarrow \quad f\left(n_{1}\right) f\left(-n_{2}\right)=e \\
&=f\left(n_{1}-n_{2}\right) \\
&=e \\
& g_{1}-n_{2}
\end{aligned}=e .
$$

otheruse of world have finite nile.

Theorem: Any finite cyclic group of order n is isomorphic to \mathbb{Z}_{n}.
G fuite yclic of order n.
Find $f: \mathbb{Z}_{n} \rightarrow G$ which is an isomaphism.
$G=\langle g\rangle . \quad g$ a geverater $\Leftrightarrow g^{n}=e$

$$
\begin{gathered}
f(a)=g^{a} \quad a \in \mathbb{Z}_{n} . \\
{[a+k n]=[a]} \\
f(a+k n)=g^{a+k n}=g^{a}\left(g^{n}\right)^{k}=g^{a}
\end{gathered}
$$ is the 1 denhig

Supperer
Suppose Show surgective.

$$
\begin{aligned}
& g_{1} \in G \Rightarrow g_{1}=g^{i} \text { fo sore } i \\
& f(i)=g^{i} \\
& \quad[i] \in \mathbb{Z}_{n} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ingective: } \\
& \text { Supice: } f(i)=f(i) \Rightarrow g^{i}=g^{j} \Rightarrow g^{i-j}=e \\
& \downarrow \\
& {[i]=[j] \text {. }} \\
& \Leftrightarrow n \mid(i-j) \\
& \Leftrightarrow \quad l \equiv i f \bmod n \\
& {[i]=[j] \text { in } Z_{n}} \\
& f(i+j)=g^{i+i}=g^{i} g^{j}=f(i) f(j) .
\end{aligned}
$$

$U(7)$ cyclic onder 6 guerated by $3 \simeq \mathbb{Z}_{6}$

Theorem: If p is prime, any group of order p is isomorphic to \mathbb{Z}_{p}.
Proof: Suppose G has pediments. p prime.
Tate $g \in G, y \neq e$.

$$
\begin{aligned}
& \operatorname{ardu}(g)||G| \Rightarrow \quad \operatorname{orden}(g)=p \\
& G=\left\{1, g, g^{\prime}, \ldots, g^{p-1}\right\}
\end{aligned}
$$

G cyclic with p elements, F is rsanaphic b 4

Theorem: (Cayley's Theorem) Any group G is isomorphic to a permutation group. If G is finite, it is isomorphic to a subgroup of S_{n} for some n.

Permutatum group is a group whose elements are byective maps $f: X \rightarrow X$ and operation is composition of funchons.

$$
\begin{aligned}
& \begin{array}{c|cccccc}
& 1 & 2 & 3 & 4 & s & 6 \\
\circ & \text { id } & \rho_{1} & \rho_{2} & \mu_{1} & \mu_{2} & \mu_{3} \\
\hline \text { id } & \text { id } & & & \rho_{2} & \mu_{1} & \mu_{2} \\
\rho_{1} & \mu_{3} \\
\hline \rho_{2} & \rho_{1} & \rho_{2} & & \rho_{2} & \text { id } & \rho_{1} \\
\mu_{1} & \mu_{2} & \mu_{3} & \overline{\mu_{1}} \\
\overline{\mu_{1}} & \mu_{1} & \mu_{2} & \mu_{3} & \text { id } & \nu_{1} & \mu_{2} \\
\mu_{3} & \mu_{2} & \mu_{3} & \mu_{1} & \rho_{2} & \text { id } & \rho_{1} \\
\mu_{3} & \mu_{1} & \mu_{2} & \rho_{1} & \rho_{2} & \text { id }
\end{array} \\
& \begin{array}{l}
\text { Suynetres } \\
\text { of a triangle }
\end{array} \\
& p_{1} \leftrightarrow \begin{array}{lllll}
1 & 2 & 3 & 45 & 6 \\
3 & 1 & 2 & 5 & 6
\end{array} \\
& (132)^{\prime \prime}(456) \\
& \mu_{1}=\begin{array}{l}
123456 \\
456123
\end{array} \\
& =\left(\begin{array}{ll}
1 & 4 \\
0
\end{array}\right)(25)(36) \\
& \lambda_{\rho_{1}}(e)=\rho_{1} \\
& \lambda \rho_{1}\left(\rho_{1}\right)=\rho_{2} \quad \lambda_{\rho_{1}}\left(\rho_{c}\right)=\rho_{1} \rho_{2}=i d \\
& \begin{array}{l}
\lambda_{\rho_{1}}\left(\mu_{1}\right)=\rho_{1} \mu_{1}=\mu_{3} \\
\lambda_{\rho_{1}}\left(\mu_{2}\right)=\rho_{1} \mu_{2}=4
\end{array} \quad \lambda_{1} \rho_{1}\left(\mu_{3}\right)=\mu_{2}
\end{aligned}
$$

G group
Make G into a group of permutations.
Let $X=G$ (as abet).
male a $f: X \rightarrow X$ for end $g \in G$.
Define $\lambda_{g}: x \rightarrow x$

$$
\lambda_{g}(x)=g x
$$

$g \rightarrow \lambda g$ is an samophism.
λg and λg^{\prime} are different if $g \neq g$!
Suppose $\lambda_{g}=\lambda_{g}$. Then $\lambda_{g}(e)=\lambda_{g^{\prime}}(e)$

$$
\begin{aligned}
& g=g e \quad g^{\prime} e=g^{\prime} \\
& \text { so } g=g^{\prime} \text {. } \\
& \lambda_{g_{\cdot} g_{2}}=\lambda g_{1}{ }^{0} \lambda g_{2} \\
& \lambda g_{j_{2}}(x)=\left(g_{1} g_{2} x=g_{1}\left(g_{2} x\right)=g_{1} \lambda g_{2}(x)\right. \\
& =\lambda_{\rho_{k}}\left(\lambda g_{2}(x)\right) \\
& =\left(\lambda_{g_{1}} \lambda_{g_{2}}\right)(x) . \\
& \mathbb{Z}_{4} \quad \lambda_{g}:\{0,1,2,3\} \bigcap \quad x=\mathbb{Z}_{4} \\
& \lambda_{0} \quad \lambda_{0}=\left(\begin{array}{llll}
0 & 1 & 2 & 3 \\
0 & 1 & 2 & 3
\end{array}\right) \quad e \\
& \lambda_{1} \\
& \lambda_{2} \\
& \lambda_{1}=\left(\begin{array}{llll}
0 & 1 & 2 & 3 \\
1 & 2 & 3 & 0
\end{array}\right) \in \lambda_{1}(x) \quad(0123) \\
& \lambda_{3} \\
& \lambda_{2}=\left(\begin{array}{llll}
0 & 1 & 2 & 3 \\
2 & 3 & 0 & 1
\end{array}\right) \quad(02)(13) \\
& \lambda_{3}=\left(\begin{array}{llll}
0 & 1 & 2 & 3 \\
3 & 0 & 1 & 2
\end{array}\right)=\left(\begin{array}{llll}
0 & 3 & 2 & 1
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \lambda_{2} \stackrel{?}{=} \lambda_{1} 0 \lambda_{1} \quad\left(\begin{array}{lll}
0 & 123
\end{array}\right)\left(\begin{array}{ll}
0 & 23
\end{array}\right)=\left(\begin{array}{ll}
0 & 2
\end{array}\right)(13)=\lambda_{2} \\
& \begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6
\end{array} \quad \text { id }\left(\begin{array}{llll}
1 & 2 & 3 & +56 \\
1 & 2 & 3 & 456
\end{array}\right) \\
& \begin{array}{c|cccccc}
\circ & \text { id } & \rho_{1} & \rho_{2} & \mu_{1} & \mu_{2} & \mu_{3} \\
\hline \text { id } & \text { id } & \rho_{1} & \rho_{2} & \mu_{1} & \mu_{2} & \mu_{3} \\
\rho_{1} & \rho_{1} & \rho_{2} & \text { id } & \mu_{3} & \mu_{1} & \mu_{2} \\
\rho_{2} & \rho_{2} & \text { id } & \rho_{1} & \mu_{2} & \mu_{3} & \mu_{1} \\
\mu_{1} & \mu_{1} & \mu_{2} & \mu_{3} & \text { id } & \text { ®i } & \rho_{2} \\
\mu_{2} & \mu_{2} & \mu_{3} & \mu_{1} & \rho_{2} & \text { id } & \rho_{1} \\
\mu_{3} & \mu_{3} & \mu_{1} & \mu_{2} & \rho_{1} & \rho_{2} & \text { id }
\end{array} \\
& P_{1}\left(\begin{array}{lllll}
1 & 2 & 3 & 45 & 6 \\
2 & 3 & 1 & 6 & 4
\end{array}\right) \\
& p_{2}\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 1 & 2 & 5 & 6 & 4
\end{array}\right) \\
& \mu_{1}=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
4 & 5 & 6 & 1 & 2 & 3
\end{array}\right) \\
& \mu_{2}=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 6 & 4 & 3 & 1 & 2
\end{array}\right) \\
& \mu_{3}=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
6 & 4 & 5 & 2 & 3 & 1
\end{array}\right) \\
& p_{1}=(123)(465) \\
& p_{2}=(132)(456) \\
& \left.\mu_{1}=(14)(25)(36)\right\rangle \\
& \mu_{2}=(15)(26)(34) \\
& \left.\mu_{3}=(16)(24)(35)\right) \\
& \mu_{1} \mu_{2}=(14)(25)(36)(15)(26)(34)=\rho_{1} \\
& =\operatorname{ta}(312)(465) \\
& =(123)(465)
\end{aligned}
$$

