
Isomorphisms: Basics
Definition: Let G and H be groups. An isomorphism from G to
H is a function

f : G æ H

which is bijective and which satisfies f(g1g2) = f(g1)f(g2) for all
g1, g2 œ G. If an isomorphism exists between two groups G and H ,
they are called isomorphic.

Example: R and Rı

+, e
x and log(x).

1

 

It

G IR with addition

H IRI xe IR X o with multiplication

f R IRI
f x ex is an isomorphism

Remember inversefunction theorem says f is bijective

it has an inverse

In IRI IR eh ene x

Iggy E fig my

55 ÉE_De arm
h RI RI

x g In xy lacxitlag

OER
I E IRI I E IRI Ina OE IR



Example: S3 and the triangle group
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Example: U(7) and Z6 are isomorphic
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Z4 and Z2 ◊ Z2 are not isomorphic.
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74 have four elements
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Suppose f Z Text is an isomorphism
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Q and Z are not isomorphic
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Some theorems
Proposition: If f : G æ H is an isomorphism, then f (eG) = eH .
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Theorem: Let f : G æ H be an isomorphism between G and H .
Then:

• G and H have the same number of elements.

• f
≠1 is an isomorphism from H to G.
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• if one of G or H is abelian, so is the other.

• if one of G or H is cyclic, so is the other.
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• if K is a subgroup of G, then f (K) is a subgroup of H .

• if one of G or H has a subgroup of order n, so does the other.
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KEG subgroup f g H isomorphism
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Proposition: Isomorphism is an equivalence relation on
groups.

• It is reflexive (G is isomorphic to itself)

• It is symmetric (if G is isomorphic to H , then H is isomorphic
to G)

• It is transitive (if G is isomorphic to H , and H is isomorphic
to K, then G is isomorphic to K)
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Find f G G that is an isomorphism

f ida G G

if f G H is an isomorphism

then f
l HSG is too

if f Gatt g H 7k arecsanophisms

then got G 7k is too

got is bijective
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