Isomorphisms: Basics
Definition: Let G and H be groups. An isomorphism from G to H is a function

$$
\frac{f: G \rightarrow H}{\text { ch satisfies } \underbrace{\stackrel{\sim}{r}}_{f\left(g_{1} g_{2}\right)}{ }^{\text {G }} \overbrace{\left(g_{1}\right) f\left(g_{2}\right)}^{\text {in }} \text { for all }}
$$

which is bijective and which satisfies $f\left(g_{1} g_{2}\right)=f\left(g_{1}\right) f\left(g_{2}\right)$ for all
$g_{1}, g_{2} \in G$. If an isomorphism exists between two groups G and H, they are called isomorphic.

Example: \mathbb{R} and $\mathbb{R}_{+}^{\star}, e^{x}$ and $\log (x)$.
$G=\mathbb{R}$ with addition
$H=\mathbb{R}_{+}^{*}=\{x \in \mathbb{R}, x>0\}$ with multiplication.

$$
f: \mathbb{R} \rightarrow \mathbb{R}_{+}^{*}
$$

$f(x)=e^{x} \quad$ is an isomaphism.
Remember: averse functor Herem says f is bijective \Leftrightarrow A has an inverse.

$$
\begin{aligned}
& \ln : \mathbb{R}_{+}^{*} \rightarrow \mathbb{R}^{\ln (x)}=\ln e^{x}=x \\
& \underbrace{f\left(g_{1} g_{2}\right)}_{\text {in } \mathbb{R}}=\underbrace{f\left(g_{1}\right) f\left(g_{2}\right)}_{x}{ }^{n^{n}} \mathbb{R}_{+}^{*} \\
& \begin{array}{ll}
\begin{array}{ll}
x=g_{1} \\
y=g_{2}
\end{array} & \begin{array}{l}
\text { in } \mathbb{R} \\
e^{\frac{x+y}{t}}=e^{x} \cdot e^{y}
\end{array}
\end{array} \\
& O \in \mathbb{R} \\
& e^{0}=1 \in \mathbb{R}_{+}^{*} \\
& 1 \in \mathbb{R}_{+}^{*} \quad \ln (1)=0 \in \mathbb{R}
\end{aligned}
$$

Example: S_{3} and the triangle group

$$
f: \underset{\text { trangle }}{\text { grup }} \longrightarrow S_{3}
$$

$$
\begin{gathered}
\text { gruup } \\
\text { symetry }
\end{gathered} \text { corresponding } \begin{gathered}
\text { permuation }
\end{gathered}
$$ permuahon of vertios.

$$
i d \rightarrow\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right)
$$

$\underset{\text { rotaht }}{\text { rotan }} \rightarrow\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$

$$
\underset{\text { loft }}{\text { rotahm }} \rightarrow\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)
$$

$$
\text { refechons } \rightarrow(23),(13),(12)
$$

$$
\begin{aligned}
& \left.v_{(23}\right)\left(12^{L} 3\right)=(13) \quad \text { ruftechs fisiug } 2 \\
& f(\underset{\substack{\text { fixflectu } 1}}{ } f(\text { rotitim right })=f(\text { creflechinfioring } 1)(\text { rotctim raght }))
\end{aligned}
$$

Example: $U(7)$ and \mathbb{Z}_{6} are isomorphic
$u(7)=\{1,2,3,4,5,6\}$ with multiplicate
$\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$ with addinim.
$3 \in u(7)$

$$
\begin{aligned}
& 3^{1}=3 \\
& 3^{2}=9=2 \\
& 3^{3}=6 \\
& 3^{4}=4 \\
& 3^{5}=5 \\
& 3^{6}=1
\end{aligned}
$$

3 has aden $6 \bmod 7$

$$
\langle 3\rangle=u(7) * \mathbb{T}
$$

$$
3 \longrightarrow 1
$$

$$
2 \rightarrow 2
$$

$u(7) 6 \rightarrow 3$
$4 \rightarrow 4$
$S \rightarrow S$
$1 \rightarrow 6=0$

$$
\begin{aligned}
& f\left(\underset{\text { in }}{f(6 \cdot 4)}=f\left(3^{3} \cdot 3^{4}\right)=f\left(3^{7}\right)=f\left(3^{6} \cdot 3\right)\right. \\
& \\
& \quad f(6)=3(3)= \\
& \\
& \\
& f(4)=4 \\
& f(6)+f(4)=3+4=7=1
\end{aligned}
$$

$$
\begin{array}{r}
f(6 \cdot 4)=f \\
g: \mathbb{Z}_{6} \rightarrow U(7) \\
g(\underline{a})=3^{a}
\end{array}
$$

$g(a)=g^{g(a+b)}=3^{a+6}=3^{a} \cdot 3^{6}=3^{a} \quad g$ is null def med' $g(a+b)=3^{a+b}=3^{a} \cdot 3^{3}=g(a) g(b) . \quad g$ is amaphism.
$\begin{array}{lll}g \text { is bizective, } & g(1)=3 & g(3)=6 \\ g(2)=2 & g(s)=5\end{array}$

$$
\begin{array}{lll}
g(1)=3 & g(2)=2 & g(4)=4
\end{array} \quad g(6)=1
$$

\mathbb{Z}_{4} and $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ are not isomorphic.
\mathbb{Z}_{4}
have four elements.

$$
\mathbb{Z}_{2} \times \mathbb{Z}_{2} \rightarrow(0,0),(1,0),(0,1),(1,1) \quad(1,1)+(1,1)=(1+1,1+1)=(0,0)
$$

Suppose $f: \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is an isamaphism. every elf of $\mathbb{Z}_{L} \times \mathbb{Z}_{2}$ has aden 2 .
But $1 \in \mathbb{Z}_{4}$ has order 4 .

$$
\begin{aligned}
& f(1)=a \in \mathbb{Z}_{2} \times \mathbb{Z}_{2} \\
& f(1+1)=f(2)=f(1)+f(1)=a+a=0 \\
& f(2)=0 . \\
& \text { also } \quad f(0)=0 \text { proof }
\end{aligned}
$$

$$
\begin{aligned}
a l s o \quad f(0) & =0 \\
a=\delta(1)=f(1+0) & =f(1)+f(0)=a+f(0) \\
a & =a+f(0) \Rightarrow f(0)=0 .
\end{aligned}
$$

So f not bijective.
No is omouphen exists.
\mathbb{Q} and \mathbb{Z} are not isomorphic
Q abortive \mathbb{Z} additive.
Suppose

$$
f: \mathbb{Z} \longrightarrow \mathbb{Q}
$$

is an isomorphism.

$$
\rightarrow f(1)=a \in \mathbb{1}, \quad a \neq 0
$$

if $\left\{\begin{array}{ll}f(1)=0 & \text { then } f(1+1)=f(2)\end{array}=f(1)+f(1)\right.$

$$
=0
$$

$$
\frac{a}{2} \in \mathbb{Q}
$$

there must be $x \in \mathbb{Z}$ so that $f(x)=\frac{a}{2}$.

$$
\begin{array}{r}
\text { Here mist be } f(2 x)=f(x+x)=f(x)+f(x)=\frac{a}{2}+\frac{a}{2}=a \\
\qquad f(2 x)=a \\
2 x=f^{-1}(a)=1
\end{array}
$$

But there is no $x \in \mathbb{Z}$ such that

$$
2 x=1
$$

So f cannot exist.

Some theorems
Proposition: If $f: G \rightarrow H$ is an isomorphism, then $f\left(e_{G}\right)=e_{H}$.
Proof: we will check that $f\left(e_{G}\right)$
has the property that $f\left(C_{h}\right) h=h f\left(e_{a}\right)$

$$
=h
$$

for ell $h \rightarrow H_{1}$
Since there is on y one element like this, $f\left(e_{G}\right)=e_{H}$.
Choose $h \in H$. $h=f(g)$ for sore $g \in G$.

$$
\begin{aligned}
& h f\left(e_{G}\right)=f(g) f\left(e_{G}\right)=f\left(g e_{G}\right)=f(g)=h \\
& f\left(e_{G}\right) h=f\left(e_{G}\right) f(g)=f\left(e_{G} g\right)=f(g)=h .
\end{aligned}
$$

$f\left(\in_{G}\right)$ has the idenky propuly so

$$
\text { it must }=e_{H}
$$

$$
\begin{array}{r}
f(x)=e^{x} \\
e^{0}=1 \\
\ln (1)=0 .
\end{array}
$$

$$
\begin{aligned}
& f: \mathbb{Z}_{6} \rightarrow u(7) \\
& f(a)=3^{a} \\
& f(0)=3^{0}=1
\end{aligned}
$$

Theorem: Let $f: G \rightarrow H$ be an isomorphism between G and H. Then:

- G and H have the same number of elements. (same cardinality)

Consequence of f belay bijective.

- f^{-1} is an isomorphism from H to G.

Probed: Need do check that $f^{-1}\left(h_{1} h_{2}\right)=f^{-1}\left(h_{1}\right) f^{-1}\left(h_{2}\right)$ for all $h_{1}, h_{2} \in H . \quad f^{-1}: H \rightarrow G$.
Given $h_{1}, h_{2} \in H$.

$$
\begin{array}{ll}
h_{1}=f\left(g_{1}\right) & A g_{1}=f^{-1}\left(h_{1}\right) \\
h_{2}=f\left(g_{2}\right) & \rightarrow g_{2}=f^{-1}\left(h_{2}\right) \\
h_{1} h_{2}=f\left(g_{1}\right) f\left(g_{2}\right)=f\left(g_{1} g_{2}\right) \quad g_{1} g_{2}=f^{-1}\left(h_{1} h_{2}\right) \\
& f^{-1}\left(h_{1}\right) f^{-1}\left(h_{2}\right)=
\end{array}
$$

- if one of G or H is abelian, so is the other.
$f: G \rightarrow H$ is an isomorphism.
G abelian

$$
\left.\begin{array}{rl}
H \Rightarrow h_{1} & =f\left(g_{1}\right) \\
H \Rightarrow h_{2} & =f\left(g_{2}\right) \\
h_{1} h_{2} & =f\left(g_{1}\right) f\left(g_{2}\right)=f\left(g_{1} q_{2}\right)
\end{array}\right)=f\left(g_{2} g_{1}\right) \quad \begin{aligned}
& =f\left(g_{2}\right) f\left(g_{1}\right) \\
f^{-1}: H \rightarrow G \text { is an isamophism } & =h_{2} h_{1}
\end{aligned}
$$

you can use save argument bo show H abelian \Rightarrow Gobelin.

- if one of G or H is cyclic, so is the other.
$f: G \rightarrow H$ esomaphesn
suppose G cyclic.
ten $G=\langle g\rangle$.

$$
h=f(g)
$$

Clam: $H=\langle h\rangle$.
wive shown $h_{2}=h^{\prime}$ for cave i
so H is cyclic.

$$
\text { Let } h_{2} \in \underset{H}{H}
$$

$$
h_{2}=f\left(g_{2}\right)
$$

$$
g_{2}=g^{i}
$$

$h_{2}+f\left(g^{i}\right)=f(g) f(g) f(g)$.. $=(f(g))^{i}=h^{i}$
$f: \mathbb{Z}_{6} \rightarrow u(7)$

$$
1^{6} \longmapsto 3^{3}=3
$$

- if K is a subgroup of G, then $f(K)$ is a subgroup of H.
$K \subseteq G$ subgroup $f: G \rightarrow H$ iscmophesm

$$
f(K)=\{h \in H \mid h=f(k) \underset{l}{f} \text { an sure } h \in K\} \text {. }
$$

Proof: $f(K)$ contains $f\left(e_{G}\right)=e_{H}$
$f(K)$ not emply

$$
\begin{aligned}
& f(K) \quad a=f\left(k_{1}\right) \\
& a, b \in f(k) \quad b=f\left(k_{2}\right) \\
& a b=f\left(k_{1}\right) f\left(k_{)}\right)=\frac{f\left(k_{1} k_{2}\right)}{K_{1} k_{2} \in K} \quad f\left(K_{1}, K_{2}\right) \in f(K)
\end{aligned}
$$

$a \in f(k) \quad a=f(k), \quad a^{-1}, \quad f\left(k^{-1}\right)=a^{-1} \quad \begin{array}{ll}f\left(k^{-1}\right) a=f\left(k^{-1}\right) f(k) \\ & =f\left(e^{\prime}\right)=e_{k}\end{array}$ $=f\left(e_{G}\right)=e_{H}$

- if one of G or H has a subgroup of order n, so does the other. follows from above
$K C G$ has n elements is a surge.
$f(K) \subseteq H$ is a subgroup and
$f: K \rightarrow f(K)$ is bijectile
so $f(K)$ has n llevents.

Proposition: Isomorphism is an equivalence relation on groups.

- It is reflexive (G is isomorphic to itself)

Find $f: G \rightarrow G$ that is an isomorphism.

$$
f=i d_{G}: G \rightarrow G .
$$

- It is symmetric (if G is isomorphic to H, then H is isomorphic to G)
$f f: G \rightarrow H$ is an sanophism then $f^{-1}: H \rightarrow G$ is, ton
- It is transitive (if G is isomorphic to H, and H is isomorphic to K, then G is isomorphic to K)
if $f: G \rightarrow H \quad g: H \rightarrow K$ are csanophisms Hen $g \circ f: G \rightarrow K$ is too.
- gif is bijective.

$$
\begin{aligned}
(g \circ f)(g \circ f \text { is bijective. } \\
\begin{aligned}
\left(g_{2}\right)=g\left(f\left(g_{1} g_{2}\right)\right) & =g\left(f\left(g_{1}\right) f\left(q_{2}\right)\right) \\
10 & =g\left(f\left(g_{1}\right)\right) g\left(f\left(q_{2}\right)\right) \\
& =(g \circ f)\left(g _ { 1 } \left((q \circ f)\left(g_{2}\right)\right.\right.
\end{aligned}
\end{aligned}
$$

