
Internal direct products
Suppose G = H ◊ K is a direct product.

• H and K are (isomorphic to) subgroups of G.

• These copies of H and K commute with one another.

• The only element these two subgroups have in common is the
identity (1, 1).
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Proposition: Suppose that G is a group and that H and K are
two subgroups of G such that:

• H fl K = {e}
• Every g œ G can be written g = hk for some h œ H and some

k œ K. (This is abbreviated G = HK).
• H and K commute, so that hk = kh for all h œ H and k œ K.

Then the map
f : H ◊ K æ G

that sends f (h, k) = hk is an isomorphism.

In this case we say that G is the “internal direct product” of H and
K.
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Example

We know that Z12 is isomorphic to Z4 ◊ Z3.

Let H = {0, 3, 6, 9} be the subgroup generated by 3 and let K =
{0, 4, 8} be the subgroup generated by 4.

• H is isomorphic to Z4 and K is isomorphic to Z3.

• G is the internal direct product of H and K.
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Example

Consider D6, the symmetries of the regular hexagon. This group is
generated by a rotation r and a reflection s, so that r has order 6, s

has order 2, and srs = r
≠1.

• Let H = {e, r
3} and K = {e, r

2
, r

4
, s, r

2
s, r

4
s}. Then D6 is

the internal direct product of H and K.

• H is isomorphic to Z2 and K is isomorphic to S3, so D6 is
isomorphic to Z2 ◊ S3.
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Example

S3 is not an internal direct product of non-trivial subgroups.
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