Internal direct products

Suppose $G = H \times K$ is a direct product.

• H and K are (isomorphic to) subgroups of G.

•
$$H$$
 and K are (isomorphic to) subgroups of G .

 $H' = \begin{cases} (h_3 e_K) \mid h \in H, e_K = identry \ h \mid K \end{cases} \quad H' \subseteq G$
 $K' = \begin{cases} (e_{H_3} K) \mid K \in K, e_H = identry \ h \mid H \mid K \mid E \end{cases} \quad (h_1 e_K) (h'), e_K = (hh'), e_K \in H$
 $K' = sawe \quad argument.$
 $f: H \longrightarrow H \quad (h_2 e_K) \quad f((h_1 h_2)) = (h_1 h_2, e_K) = f(h_1) f(h_2).$

• These copies of H and K commute with one another.

• These copies of H and K commute with one another. $K' \in H'$, $K' \in K'$ h' K' = K' h'. $\forall k' \in K'$ and $h' \in H'$.

$$K_1 = (G^H) K$$
 $K_1 = (F') G^K$
 $K_1 = (F') K$
 $K_1 = (F') K$
 $K_1 = (F') K$
 $K_2 = (F') K$
 $K_3 = (F') K$
 $K_4 = (F') K$

The only element these two subgroups have in common is the identity (1,1).= $(C_{\mathbf{H}_1}C_{\mathbf{K}})$

$$H' \rightarrow (h_1 e_k)$$
 $\{(e_{H_1} e_k)\}$
 $H' \rightarrow (h_2 e_k) \in K' = \} \quad h = e_{H_1}$

$$H' \cap K' = \left\{ (e_{H_3} e_{K}) \right\}$$

$$H' \ni (h_3 e_{K}) \quad (h_3 e_{K}) \in K' = \right\} \quad h = e_{H_3}.$$

$$I \qquad \qquad = (h_3 e_{K}) (e_{H_3} K)$$

$$I \qquad \qquad = (h_3 e_{K}) (e_{H_3} K)$$

$$H' \cap K' = \left\{ (e_{H_3} e_{K}) \right\}$$

$$I \qquad \qquad = (h_3 e_{K}) (e_{H_3} K)$$

$$H' \cap K' = \left\{ (e_{H_3} e_{K}) \right\}$$

$$I \qquad \qquad = (h_3 e_{K}) (e_{H_3} K)$$

Proposition: Suppose that G is a group and that H and K are two subgroups of G such that:

•
$$H \cap K = \{e\}$$

- Every $g \in G$ can be written g = hk for some $h \in H$ and some $k \in K$. (This is abbreviated G = HK).
- H and K commute, so that hk = kh for all $h \in H$ and $k \in K$.

Then the map

$$f: H \times K \to G$$

that sends f(h, k) = hk is an isomorphism.

In this case we say that G is the "internal direct product" of H and K.

In this case we say that G is the internal direct product of
$$T$$
 and K .

$$f: H \times K \longrightarrow G \quad \text{is this an isomorphism?}$$
is the procedure? — surpctive? yet by (2) Every $g = hk$

In some $h \in H$, $k \in K$

$$f(h,k) = hk = f(h,k') = hk' = h' + len (h')^{-1}h = k' K'^{-1}$$

$$f(h,k') = f(hh',k') = hh' + len (h')^{-1}h = len (h')^{-1}$$

Example

We know that \mathbb{Z}_{12} is isomorphic to $\mathbb{Z}_4 \times \mathbb{Z}_3$.

Let $H = \{0, 3, 6, 9\}$ be the subgroup generated by 3 and let $K = \{0, 4, 8\}$ be the subgroup generated by 4.

• H is isomorphic to \mathbb{Z}_4 and K is isomorphic to \mathbb{Z}_3 .

Hnk =
$$\{0\}$$

H and K comble sine G is completive.
 $\alpha \in \mathbb{Z}_{12}$ $\alpha = h + K$
 $1 = 4 - 3$
 $\alpha = 4 \cdot \alpha + 3(-\alpha)$ for any α .
 $11 = 4 \cdot 11 + 3(-11)$ 4.11 in \mathbb{Z}_{12}
• G is the internal direct product of H and K. $44 = 36 + 8 = 8112$
 $G \simeq H \times K$
 $\mathbb{Z}_{12} = \{0, 3, 6, 1\} \times \{0, 4, 8\}$
 $\mathbb{Z}_{12} = \{0, 3, 6, 1\} \times \{0, 4, 8\}$

Example

- HK=KH

Consider D_6 , the symmetries of the regular hexagon. This group is generated by a rotation r and a reflection s, so that r has order 6, shas order 2, and $srs = r^{-1}$.

• Let $H = \{e(r^3) \text{ and } K = \{e, r^2, r^4, s, r^2s, r^4s\}$. Then D_6 is the internal direct product of H and K.

• H is isomorphic to \mathbb{Z}_2 and K is isomorphic to S_3 , so D_6 is isomorphic to $\mathbb{Z}_2 \times S_3$.

Example

 S_3 is not an internal direct product of non-trivial subgroups.

$$S_3$$
 has subgroups

 $H = g \in (123), (132) = (12) = (12) = (12)$
 $K = g \in (123), (132) = (1$