Internal direct products
Suppose $G=H \times K$ is a direct product.

- H and K are (isomorphic to) subgroups of G.

$$
\begin{aligned}
& H^{\prime}=\left\{\left(h, e_{k}\right) \mid h \in H, e_{k}=\text { identry in } k\right\} \\
& K^{\prime}=\left\{\left(e_{H}, k\right) \mid K \in K, e_{H}=i \operatorname{dimhy} \text {, in } H\right\} . \quad H^{\prime} \subseteq G \\
& \left.H^{\prime}: e_{G}=\left(e_{H}, e_{K}\right) \in H^{\prime} \quad\left(h_{,} e_{k}^{\prime \mu^{\prime}}\right)\left(h^{\prime} h^{\prime \prime}\right)^{-1}, e_{k}\right)=\left(h\left(h^{\prime}\right)^{-1}, e_{k}\right) \in H^{\prime}
\end{aligned}
$$

K^{\prime} - same argument.

$$
\begin{aligned}
& f: H \rightarrow H^{\prime} \quad \text { bigective. } \rightarrow f^{-1}\left(\left(h, e_{k}\right)\right)=h \text {. ho } f \text { in an } \begin{array}{l}
\text { inverse. }
\end{array} \\
& f(h)=\left(h, e_{k}\right) \quad f\left(\left(h, h_{2}\right)\right)=\left(h, h_{2}, e_{k}\right) \\
& =\left(h_{1}, e_{k}\right)\left(h_{2}, e_{k}\right)=f\left(h_{k}\right) f\left(h_{2}\right) \text {. }
\end{aligned}
$$

- These copies of H and K commute with one another.
$h^{\prime} \in H^{\prime}, K^{\prime} \in K^{\prime} \quad h^{\prime} K^{\prime}=K^{\prime} h^{\prime} \quad \forall K^{\prime} \in K^{\prime}$ and $h^{\prime} \in H^{\prime}$.

$$
\begin{array}{ll}
h^{\prime}=\left(h, e_{k}\right) & h^{\prime} k^{\prime}=(h, k) \\
k^{\prime}=\left(e_{H}, k\right) & k^{\prime} h^{\prime}=(h, k)
\end{array}
$$

- The only element these two subgroups have in common is the identity $(1,1)=\left(e_{H}, e_{K}\right)$

$$
\begin{array}{r}
H^{\prime} \cap K^{\prime}=\left\{\left(e_{H,} e_{K}\right)\right\} \\
H^{\prime} \rightarrow\left(h, e_{K}\right)
\end{array} \quad \begin{aligned}
& \left(h, e_{K}\right) \in K^{\prime} \Rightarrow h=e_{H} .
\end{aligned}
$$

Proposition: Suppose that G is a group and that H and K are two subgroups of G such that:

- $H \cap K=\{e\}$
- Every $g \in G$ can be written $g=h k$ for some $h \in H$ and some $k \in K$. (This is abbreviated $G=H K$).
- H and K commute, so that $h k=k h$ for all $h \in H$ and $k \in K$. (3)

Then the map

$$
f: \underline{H \times K} \rightarrow \underline{G}
$$

that sends $f(h, k)=h k$ is an isomorphism.
In this case we say that G is the "internal direct product" of H and K.

$$
f: H \times K \rightarrow G \text { is this an isamaphism? }
$$

$$
f(h, k)=h K .
$$

is it brective? -songectiv? yous by (2) Every g=hk
en some $h \in H, k \in K$. $\quad f(h, k)=h K=f\left(h^{\prime}, k^{\prime}\right)=h^{\prime} K^{\prime}$

$$
\begin{aligned}
& \text { H, } k \in K . \quad f(h, k)=h k=f\left(h^{\prime}, k^{\prime}\right)=h^{\prime} k^{\prime} \\
& \text { - ingctie? } \quad f k=h^{\prime} k^{\prime} \quad \text { then }\left(h^{\prime}\right)^{-1} h=k^{\prime} K^{-1}
\end{aligned}
$$

$4 k=h^{\prime} k^{\prime}$, $\underset{-1}{\left(h_{-}^{\prime}\right)^{-1} h}=K_{R}^{\prime} K^{-1}$
fingective.

$$
\left(k^{\prime}\right) k^{-1}=e_{k} \Rightarrow k=k^{\prime}
$$

$$
\begin{aligned}
& \left.f(h, k)\left(h^{\prime}, k^{\prime}\right)\right)=f\left(h h^{\prime}, k k^{\prime}\right)=h h^{\prime} k k^{\prime} \\
& f\left((h, k l) f\left(h^{\prime}, k^{\prime}\right)\right)=h k h^{\prime} k^{\prime}=? \quad h h_{\infty}^{\prime} k^{\prime}=h h^{\prime} k k^{\prime} \\
& 2
\end{aligned}
$$

Example
We know that $\underline{\mathbb{Z}_{12}}$ is isomorphic to $\underline{\mathbb{Z}_{4} \times \mathbb{Z}_{3}}$.
Let $H=\{\underline{0,3,6,9\}}$ be the subgroup generated by 3 and let $K=$ $\{0,4,8\}$ be the subgroup generated by 4 .

- H is isomorphic to \mathbb{Z}_{4} and K is isomorphic to \mathbb{Z}_{3}.

$$
H \cap K=\{0\}
$$

H and K connote sine G is commutative.

$$
a \in \mathbb{Z}_{12} \quad a=h+k
$$

$$
1=4-3
$$

$a=4 \cdot a+3(-a)$ for any a.

$$
\begin{aligned}
& 11=4 \cdot 11+3(-11) \quad 4 \cdot 11 \quad \text { in } \mathbb{Z}_{12} \\
& 11 \equiv 8 \operatorname{tes} 3+8 \quad 3 \in H \quad 86 K . \quad 44=21+8
\end{aligned}
$$

- G is the internal direct product of H and K.

$$
44=36+8 \equiv 8(12)
$$

$$
\begin{aligned}
G & \simeq H \times K \\
\mathbb{Z}_{12} & \leftarrow\{0,3,6,9\} \times\{0,4,8\} \\
x & +y_{\bmod R}=f(x, y)
\end{aligned}
$$

Example
Consider D_{6}, the symmetries of the regular hexagon. This group is generated by a rotation r and a reflection s, so that r has order $6, s$ has order 2, and frs $=r^{-1}$.

- Let $H=\left\{e r^{3}\right\}$ and $K=\left\{e, r^{2}, r^{4}, s, r^{2} s, r^{4} s\right\}$. Then D_{6} is the internal direct product of H and K.

$\begin{array}{ll}r & \text { of } a d e r 6 \\ s & \text { of } o r d e r \\ r^{3}=e a r\end{array}$

$$
s r s=r^{-1} \quad s r s s=r^{-1} s
$$

$$
s r=r^{-1} s
$$

K is a subgroup,

- HKK=\{e\}
$-G=H K$
kris -ierenck
- HL $=K H$

$$
\begin{aligned}
r^{2 i} \cdot r^{2 j} & =r^{2(i+j)} \quad s \quad \text { even } \\
s r^{2 i} s & =s r_{j} \cdot r \cdot \cdots \cdot s \\
& \left.=r^{-1} \cdot r^{-1} \cdots \cdot r^{-1} \cdot s\right] \\
& =r^{-2 i}
\end{aligned}
$$

- H is isomorphic to \mathbb{Z}_{2} and K is isomorphic to S_{3}, so D_{6} is isomorphic to $\mathbb{Z}_{2} \times S_{3}$.

$$
\begin{aligned}
& H=\mathbb{Z}_{2} \\
& K=\left\{e, r^{2}, r^{4}, r^{2} s, r^{4} s, s\right\}
\end{aligned}
$$

$$
\begin{aligned}
& r^{3} \cdot r^{2 i}=r^{2 i} \cdot r^{3} \\
& r^{3} \cdot s=r r r s=s r^{-3}=r^{-3}=r^{3} \\
& r^{6}=1
\end{aligned}
$$

$$
D_{6}=H \times K
$$

$\left\{e, r^{n}, r^{t}\right\}$ is cyclic of aden 3 .

$$
S r^{2} s=r^{-2}
$$

$K=D_{3}$ the triangle group.

Example
S_{3} is not an internal direct product of non-trivial subgroups.
S_{3} has subgroups

$$
\begin{aligned}
& H=\{e,(123),(132)\} \\
& K=\{e,(12)\}
\end{aligned}
$$

2 subgroups $H \cap K=\{e\}$.

$$
\begin{gathered}
H K=S_{3} \\
(12) e=(12)=(23) \\
(12)(123)=(13) \\
(12)(132)=(13) \\
(12)(123)= \\
(123)(12)=
\end{gathered}
$$

S_{3} is NOT a product.

