Modular exponentiation
To make RSA practical we must compute $x^{D} \bmod N$ when N and D are huge.
Example: $N=101, a=2, \stackrel{D}{C}=43$.

$$
\begin{aligned}
& 2^{43} \bmod 101 \\
& 43=32+11=32+8+3=32+8+2+1 \\
& =2^{5}+2^{3}+2^{1}+2^{0} \\
& \begin{aligned}
& a^{43}=a^{\left(2^{0}+2^{1}+2^{3}+2^{5}\right)} \\
&=a^{2^{0}} \cdot a^{1} \cdot a^{2^{3}} \cdot a^{2^{3}} \\
& a^{\text {times }}
\end{aligned} \\
& a=2 \quad 2^{2^{5}} \\
& 2^{2}=4 \quad\left(2^{2}\right)^{2}=16.2=32 \\
& a^{2^{n}}=\left(\left(\left(a^{2}\right)^{-}\right)^{2}\right) \quad 2 \cdot\left(2^{2}\right) \cdot(8)(32) \\
& 2,2^{2}, 2^{4}, 2^{8}, 2^{6}, 2^{32} \quad 9 \text { mot. }
\end{aligned}
$$

Repeated squaring

Algorithm: Given a, E, and N, the goal is to compute $a^{E} \bmod \cdot \mathrm{~N}$.

- Initialize: Set $S=a, P=1, T=E$
- Loop: While $\mathrm{T}>1$:
- if T is odd, set $\mathrm{P}=\left(\mathrm{S}^{*} \mathrm{P}\right) \bmod \mathrm{N}$.
- Replace S by $\mathrm{S}^{*} \mathrm{~S} \bmod \mathrm{~N}$.
- Divide T by 2 , dropping any remainder
\rightarrow • Finish: Return $\left(S^{*} P\right) \bmod N$

Return $=86=68 * 28 \bmod 101 . \quad 2^{43} \equiv 86 \bmod 101$.

Proof of repeated squaring

- Initialize: Set $S=a, P=1, T=E$
- Loop: While $\mathrm{T}>1$:
* if T is odd, set $\mathrm{P}=\left(\mathrm{S}^{*} \mathrm{P}\right) \bmod \mathrm{N}$.
* Replace S by S*S mod N.
* Divide T by 2 , dropping any remainder
- Finish: Return ($\mathrm{S} * \mathrm{P}$) mod N

Suppose M is the output of the algorithm with input $S=\underline{a}, P=1$, and $T=E$.

- The first observation we make is that if we initialize the algorithm with $P=k$ instead of $P=1$, then the output is $k M$.
- If $E=1$, the output is a, as it should be.

$$
\begin{array}{r}
\text { Returns } S \cdot p=a^{2} \quad S=a \quad p=1 \\
\text { Retrain } a=a^{\prime}
\end{array}
$$

Suppose the algorithm works for all $e<E$, and any a and N. We show it works for E.

If E is even:

- the first step replaces a by a^{2}, keeps P as 1 and replaces E by $E / 2$.
- By induction the rest of the algorithm computes $\left(a^{2}\right)^{E / 2} \bmod N$ or $a^{E} \bmod N$ as desired.

$$
\left.\begin{array}{ccc}
S & p & T \\
a & 1 & E \swarrow \\
\underline{a^{2}} & 1 & E / 2
\end{array} \begin{array}{c}
\\
\vdots \\
\vdots
\end{array} \quad \begin{array}{c}
\text { computes } \\
\\
\\
\\
\\
\end{array} a^{2}\right)^{E / 2} \bmod
$$

If E is odd:

- the first step replaces a by a^{2}, replaces P by a, and replaces E by $(E-1) / 2$.
- By induction the rest of the algorithm with an initial P of 1 would computes $\left(a^{2}\right)^{(E-1) / 2}$ which is $a^{E-1} \bmod N$. But since P started at a, it computes $a a^{E-1}=a^{E} \bmod N$ as desired.

$$
\begin{array}{ccc}
\frac{s}{a} & 1 & E \\
a^{2} & a & (E-1) / 2
\end{array} \begin{aligned}
& a\left[a^{2(E-1) / 2}\right. \\
& \\
& \\
&
\end{aligned}
$$

Running time $\sim \log _{2} E<\log _{2} N$

