Modular exponentiation

To make RSA practical we must compute $x^D \mod N$ when N and D are huge.

Example: $N = 101, a = 2, \mathbf{D} = 43.$

$$2^{43} \mod 101$$

$$43 = 32 + 11 = 32 + 8 + 3 = 32 + 8 + 2 + 1$$

$$= 2^{5} + 2^{3} + 2^{2} + 2^{3}$$

$$= 2^{5} + 2^{5$$

Repeated squaring

Algorithm: Given a, E, and N, the goal is to compute $a^E \mod M$

- Initialize: Set S=a, P=1, T=E
- Loop: While T>1:
 - if T is odd, set $P = (S^*P) \mod N$.
 - Replace S by S*S mod N.
 - Divide T by 2, dropping any remainder
- \longrightarrow Finish: Return (S*P) mod N

$$\frac{\frac{S}{2} + T}{4 \cdot 2} + \frac{43}{21} + \frac{43}{54} + \frac{16}{54} + \frac{43}{54} + \frac{16}{54} + \frac{16}{54} + \frac{10}{54} + \frac{10$$

Return = $86 = 68*28 \mod 101$.

Proof of repeated squaring

- Initialize: Set S=a, P=1, T=E
 - Loop: While T>1:
 - * if T is odd, set $P = (S^*P) \mod N$.
 - * Replace S by S*S mod N.
 - * Divide T by 2, dropping any remainder
 - Finish: Return (S*P) mod N

Suppose M is the output of the algorithm with input $S = \underline{a}, P = 1$, and T = E.

• The first observation we make is that if we initialize the algorithm with P = k instead of P = 1, then the output is kM.

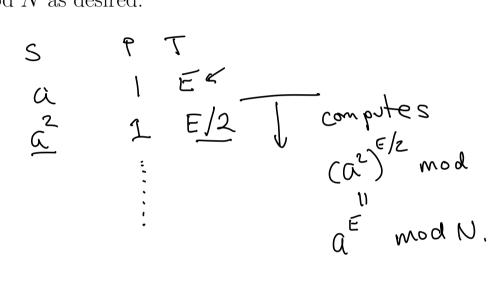
• If E = 1, the output is a, as it should be.

Returns S.P =
$$a^{t}$$
 S = a^{t} S = a^{t} P = a^{t}
Return $a = a^{t}$.

Suppose the algorithm works for all e < E, and any a and N. We show it works for E.

If E is even:

- the first step replaces a by a^2 , keeps P as 1 and replaces E by E/2.
- By induction the rest of the algorithm computes $(a^2)^{E/2} \mod N$ or $a^E \mod N$ as desired.



If E is odd:

- the first step replaces a by a^2 , replaces P by a, and replaces E by (E-1)/2.
- By induction the rest of the algorithm with an initial P of 1 would computes $(a^2)^{(E-1)/2}$ which is $a^{E-1} \mod N$. But since P started at a, it computes $aa^{E-1} = a^E \mod N$ as desired.

