Proof of Lagrange's Theorem

Definition: Let H be a subgroup of a group G. The *index* of H in G, written G: H is the number of left (or right) cosets of H in G if this number is finite. If it is not finite, H is said to have infinite index.

Example:

• If
$$\underline{H}$$
 is the group of rotations of the triangle, H has index 2 in
 D_3 . H has sets, 2 costs so $[G:H]=2$
• $n\mathbb{Z}$ has index n in \mathbb{Z} . $a \in \mathbb{Q}$, $b \in \mathbb{Q}$.
• If $H = \{e, (12)\}$ in D_3 , then H has index 3.
 $\begin{bmatrix} G:H]=3.\\ G:H]=3.\\ G=IR = \{x \in \mathbb{R}, x=0\}$ operation is malty broken.
 $H=\{+1,-1\}$ $r \in \mathbb{R}^{\times}$ $r H=\{r_3-r\}$.
 $r \in \mathbb{R}^{\times}$, $r > 0$ $r H$
 $r H=SH = \{r_3-r\} = \{s_3-s\}$ $(=)r=\pm s$ when
 $H=SH = \{r_3-r\} = \{s_3-s\}$ $(=)r=\pm s$ when
 $H = SH = \{r_3-r\} = \{s_3-s\}$ $(=)r=\pm s$ when
 $H = SH = \{r_3-r\} = \{s_3-s\}$ $(=)r=\pm s$ when
 $H = SH = \{r_3-r\} = \{s_3-s\}$ $(=)r=\pm s$ when
 $H = SH = \{r_3-r\} = \{s_3-s\}$ $(=)r=\pm s$ when
 $H = SH = \{r_3-r\} = \{s_3-s\}$ $(=)r=\pm s$ when
 $H = SH = \{r_3-r\} = \{r_3-r\} = \{r_3-s\}$ $(=)r=\pm s$ when
 $H = SH = \{r_3-r\} = \{r_3-r\}$ $(=)r=\pm s$ when
 $H = SH = \{r_3-r\} = \{r_3-r\}$ $(=)r=\pm s$ when
 $H = SH = \{r_3-r\} = \{r_3-r\}$ $(=)r=\pm s$ when
 $H = SH = \{r_3-r\} = \{r_3-r\}$ $(=)r=\pm s$ when
 $H = SH = \{r_3-r\} = \{r_3-r\}$ $(=)r=\pm s$ when
 $H = SH = \{r_3-r\} = \{r_3-r\}$ $(=)r=\pm s$ $r=s$ when
 $H = SH = \{r_3-r\} = \{r_3-r\}$ $(=)r=\pm s$ $r=s$ r

Theorem: Let G be a finite group and H a subgroup. Then

$$|\underline{G}| = \underbrace{|H|}_{[\underline{G:H}]}$$

In particular the order of H divides the order of G.

Proof: Each (left) coset of H in G has the same number of elements as H. More specifically the map $f:H\to gH$ defined by $f(\underline{h})=\underline{g}h$ is bijective.

This means that G is the disjoint union of [G:H] sets, each with |H| elements, proving the result.

Corollary: The order of an element of a group is a divisor of the order of the group.

$$g \in G$$

 $orden (g) = \langle g \rangle$
 $|\langle g \rangle| || E| by Lyrange's Henen,$
 Z_{12} orden $(3) = 4$ $4.3 \equiv 6$ (12)
 $inden \langle 3 \rangle = 3$
 $orden \langle 3 \rangle = 4$.

Corollary: If |G| is a prime number, then G is a cyclic group and any non-identity element is a generator of G.

$$|G| = P \quad P \quad prime.$$

$$deG, \quad k \neq 1.$$

$$Order(a) \quad must \quad dwich \quad P.$$

$$order(a) = P.$$

$$|\langle \alpha \rangle| = P. \quad [G:\langle \alpha \rangle] = 1$$

$$\langle \alpha \rangle = G.$$

Corollary: Suppose $K \subset H \subset G$ are subgroups. Then [G:K] = [G:H][H:K].

Proof:

$$[\underline{G:K}] = \frac{|G|}{|K|} = \frac{|G|}{|H|}\frac{|H|}{|K|} = [\underline{G:H}][\underline{H:K}]$$