Proof of Lagrange’s Theorem

Definition: L@H\]% a subgroup of a group GG. The index of H
in G, written [[G : HJ| is the number of left (or right) cosets of H in
G if this number is finite. If it is not finite, H is said to have infinite
index.

Example:
P > G ~ Ds
« If H is the group of rotations of the triangle, 4 has index 2 in
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e nZ hasindex nin Z. a+qd  &=0,\,_.pn-)
« If H=1{e,(12)} in D3, then H has index 3.
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Theorem: Let G be a finite group and H a subgroup. Then
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Gl = [H|[G: H].
In particular the order of H divides the order of G.

Proof: Each (left) coset of H in G has the same number of elements
as H. More specifically the map f: H — gH defined by f(h) = gh
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This means that G is the disjoint union of [G : H] sets, each with
|H| elements, proving the result.



Corollary: The order of an element of a group is a divisor of the
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order of the group.
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Corollary: If |G| is a prime number, then G is a cyclic group and
any non-identity element is a generator of G.
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Corollary: S KCHCG b . Th
orollary: buppose C C G are subgroups en

G K]=|G: H|[H : K].

Proof:
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