## Introduction to Lagrange's Theorem

Theorem: Let G be a finite group and H a subgroup of G. Then the number of elements in H is a divisor of the number of elements in G.

## Examples

Let G be the symmetries of the equilateral triangle. G has 6 elements. What are its subgroups?



Let G be the group 
$$\mathbb{Z}_{12}$$
. G has 12 elements. What are its subgroups?  
 $\langle 1 \rangle = G$   
 $\langle 2 \rangle = \{2, 4, 6, 8, 10, 0\} \subseteq G$   
 $\langle 4 \rangle = \{2, 4, 6, 8, 10, 0\} \subseteq G$   
 $\langle 4 \rangle = \{2, 4, 6, 8, 10, 0\} \subseteq G$   
 $\langle 4 \rangle = \{2, 4, 6, 8, 10, 0\} \subseteq G$   
 $\langle 4 \rangle = \{2, 4, 6, 8, 10, 0\} \subseteq G$   
 $\langle 4 \rangle = \{2, 4, 8, 0\} \subseteq G$   
 $\langle 6 \rangle = \{2, 4, 8, 0\} \subseteq G$   
 $\langle 6 \rangle = \{2, 6, 0\} \subseteq G$   
 $\langle 6 \rangle = \{2, 6, 0\} \subseteq G$   
 $\langle 6 \rangle = \{2, 6, 0\} \subseteq G$   
 $\langle 6 \rangle = \{2, 6, 0\} \subseteq G$   
 $\langle 6 \rangle = \{2, 6, 0\} \subseteq G$   
 $\langle 6 \rangle = \{2, 6, 0\} \subseteq G$   
 $\langle 6 \rangle = \{2, 6, 0\} \subseteq G$   
 $\langle 6 \rangle = \{2, 6, 0\} \subseteq G$   
 $\langle 12, 9, 0\rangle$   
 $\langle 12, 9, 0\rangle$ 

Let G be the symmetric group on 4 elements. What are the orders of different permutations? 11 \_

permutations? Sy have 24 elts.  
(i) have order 2  
(21) have order 2  
(123) have order 3  
(12) (23) have order 2  
(12) (23) have order 2  
(1234) have order 2  
(1234) have order 4.  

$$(1234)$$

What about the subgroup  $A_4$ ?

~

(1)  
(12)(34) (13)(24) (14)(32)  
3 cuples  
12) 
$$12/24$$
.

The symmetries of the square (the dihedral group  $D_4$ ) is contained in  $S_4$ .

