Introduction to Lagrange's Theorem
Theorem: Let G be a finite group and H a subgroup of G. Then the number of elements in H is a divisor of the number of elements in G.

Examples
Let G be the symmetries of the equilateral triangle. G has 6 elements. What are its subgroups?

Q
(1)
(c) $\{e,(123),(132)\} 3$
(d) $\{e,(12)\} 2$
suppose H is a subgroup if $H \neq\{e\}$ then ether H contains a rotation or a reflection. if H carizins a rotasm then ectlen H is case C or H also contains a neflelvi.
of H contains $\left\{c_{,}(123),(132)\right\}$ and (12) then H also carting

$$
\begin{aligned}
& (123)(12)=(13) \quad \text { so } \\
& (123)(13)=(32) \quad H=6
\end{aligned}
$$

H contour a reflect (12) Hen H is care d or it contains a rotation so in ${ }^{1}$ all of G or it catkins another reform (ice (13). Ten

$$
(12)(13)=(321) \text { so again } H=G \text {. }
$$

Let G be the group \mathbb{Z}_{12}. G has 12 elements. What are its subgroups?

$$
\begin{aligned}
& \langle 1\rangle=G \\
& \langle 2\rangle=\{2,4,6,8,10,0\} \subseteq G \\
& \langle 3\rangle=\{3,6,9,0\} \quad G \\
& \langle 4\rangle=\{4,8,0\} \subseteq a \\
& \langle 6\rangle=\{6,0\} \subseteq G
\end{aligned}
$$

12 dt 6 eds 4 efts
3 efts 2 elts

* $\langle a\rangle$ is ole smallest n so that

$$
n a \equiv 0 \quad \bmod 12, \quad \sqrt{\frac{12}{(12, a)}}=n
$$

Let G be the symmetric group on 4 elements. What are the orders of different permutations? Ty has 24 efts.
(1) has order I
(21) hos aden 2
(123) have order 3

$$
\operatorname{arden}(g)=\#\langle g\rangle
$$

(12)(234) have order 2
$(1234) \quad$ have ordn 4 .
By lagrange

$$
\left.\#\langle g\rangle\right|^{*} G .
$$

What about the subgroup A_{4} ?

$$
\begin{array}{ll}
(12) \\
(12)(34) \\
3 \text { aneles } & (13)(24) \\
12 / 24 .
\end{array}
$$

Dy has 8 etc.
rotations $3-(1234)$ identily - ()
-2 reflechns across sides 2 refletims alary dignals.

$$
(23)(14)
$$

$$
(13)
$$

$$
8124
$$

