The converse of Lagrange's Theorem is false
Proposition: The group A_{4}, of order 12, has no subgroup of order

- Suppose H has order 6 .
- There are 8 three-cycles in A_{4}.

3-cyde: pick 3 of 4 ets $\{1,2,3,4\} \longleftrightarrow\binom{4}{3}$ or 4 way p 10 do that

$$
\begin{aligned}
& (123),(13,2) \quad\{1,2,3\}\{1,2,4\}\{1,3,4\} \\
& \begin{array}{l}
(123),(13,2) \\
\left.4 \times 2=8 \text { cycles, care pairs } \begin{array}{lll}
\{1,2,3\} & \{1,2,4\} & \{1,3,4\} \\
\{2,3,4\}
\end{array}\right]
\end{array}
\end{aligned}
$$

- By the pigeonhole principle, H must contain at least two of them; and since H is a subgroup, it must contain a pair a and a^{-1} where a is some 3 -cycle. Suppose for the sake of argument that (123) and (132) are in H. gt

$$
\left[A_{4}: H\right]=2
$$

At least 2 3-cyetes must be in H. (123), (132) EH

- There are 3 elements of H unaccounted for. Suppose two of them are three-cycles. Any other three cycle has two elements in common with (123). So suppose (124) and (142) are in H. Then

$$
(123)(124)=(13)(24)
$$

is in H. That adds up to six elements.

- However also

$$
(124)(123)=(23)(14)
$$

must be in H, yielding 7 elements, which can't be true.

- That means that the 3 extra elements of H are the (13)(24), (14)(23), and (12)(34). But then

$$
\underline{(123)}\left(\underline{12)(34)}=\binom{\infty}{341}\right.
$$

is also in H and again we have seven elements.

