The converse of Lagrange's Theorem is false

Proposition: The group A_4 , of order 12, has no subgroup of order 6. $A_4 = \{ g \in S_4 \mid g \text{ is even} \}$. $C_j (12)(34)_j (13)(24)_j (13)(2$

• Suppose H has order 6.

- There are 8 three-cycles in A_4 . 3-cycle: pick 3 of 4 ets $\xi_{1,2,3,4}$ (3) or 4 ways to do that (123), (132) $4\times2 = 8$ solveles, come apairs $g_{1,2}^{-1}$.
- By the pigeonhole principle, H must contain at least two of them; and since H is a subgroup, it must contain a pair a and a^{-1} where a is some 3-cycle. Suppose for the sake of argument that (123) and (132) are in H.

H
(123) and (132) are in
$$\Pi$$
. give
(A_y: H] = 2
(A_y: H] = 2
A+ least 2 3-cycles
must be in H.
(123), (132) EH
1
6 elts
6 elts

 There are 3 elements of H unaccounted for. Suppose two of them are three-cycles. Any other three cycle has two elements in common with (123). So suppose (124) and (142) are in H. Then

$$(123)(124) = (13)(24)$$

is in H. That adds up to six elements.

• However also

$$(124)(\underline{123}) = (\underline{23})(\underline{14})$$

must be in H, yielding 7 elements, which can't be true.

• That means that the 3 extra elements of H are the (13)(24), (14)(23), and (12)(34). But then

$$(\underline{123})(\underline{12})(\underline{34}) = (\underline{341})$$

is also in H and again we have seven elements.

