Permutations If X is a set, a bijection $f: X \to X$ is called a permutation of X The permutations of a set form a group S_X under composition of functions, with identity element $i\underline{d}_X: X \to X$. $$id_{x}(x) = x$$ $f(g(h(x))) = (f(g(h(x))) = (f(g(h(x))))$ $f(g(h(x))) = (f(g(h(x))) = (f(g(h(x))))$ $f(g(h(x))) = (f(g(h(x))))$ If X is finite with n elements then S_X has n! elements. is finite with $$n$$ elements then DX has n : elements. $X = \begin{cases} x_1 & x_2 \\ x_1 & x_2 \\ \vdots & x_n \end{cases}$ $X = \begin{cases} x_1 & x_2 \\ \vdots & x_n \end{cases}$ $X = \begin{cases} x_1 & x_2 \\ \vdots & x_n \end{cases}$ $X = \begin{cases} x_1 & x_2 \\ \vdots & x_n \end{cases}$ If X is finite with n elements we can assume $$X = \{1, 2, \dots, n\}.$$ The permutations of this set X is called the symmetric group on nn! denonts. elements and written S_n . ## Multiplication of Permutations An element $\sigma \in S_n$ sending $\sigma(i) = x_i$ can be written ending $$\sigma(i) = x_i$$ can be written $$\sigma(i) = x_i$$ and $\sigma(i) = x_i$ Multiplication is composition of functions and goes right to left. $$\sigma = \frac{\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}}{\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}}$$ $$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 \end{pmatrix}$$ $$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$ $$\sigma = \begin{pmatrix} 1$$