Permutations
If X is a set, a bijection $f: X \rightarrow \underline{X}$ is called a permutation of X

$$
\begin{array}{ll}
f: \mathbb{Z} \rightarrow \mathbb{Z} & f(x)=x+1 \\
x=\{1,2\} & f(1)=2
\end{array}
$$

The permutations of a set form a group S_{X} under composition of functions, with identity element $i \underline{d_{X}}: X \rightarrow X$.

$$
\begin{aligned}
& i d_{x}(x)=x \\
& f d g \circ h)(x)=f(g(h(x))=(f \circ g) \circ h(x)
\end{aligned}
$$

f bigective $\Rightarrow f$ hus an inverse funchm
If X is finite with n elements then S_{X} has n ! elements.

If X is finite with n elements we can assume

$$
X=\{1,2, \ldots, n\}
$$

The permutations of this set X is called the symmetric group on n elements and written S_{n}.

Multiplication of Permutations
An element $\sigma \in S_{n}$ sending $\sigma(i)=x_{i}$ can be written

$$
\sigma=\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right) \quad \begin{gathered}
\sigma(1)=x_{1} \\
\sigma(s)=x_{2} \\
\sigma(3)=x_{3}
\end{gathered} \quad\left\{\begin{array}{l}
1
\end{array}\right\} .
$$

Multiplication is composition of functions and goes right to left.

$$
\begin{aligned}
& \begin{array}{c}
\sigma=\frac{\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{array}\right)}{\tau=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1
\end{array}\right)} \text {, }
\end{array} \\
& \underset{\uparrow}{\sigma \tau}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{array}\right)\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 4
\end{array}\right)=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 4 & 3 & 2
\end{array}\right) \\
& \tau(1)=2 \quad \tau(2)=3 \\
& \sigma(2)=1 \quad \sigma(3)=4 \\
& \sigma=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{array}\right) \Rightarrow \theta
\end{aligned}
$$

