Permutations

If X is a set, a bijection $f: X \to X$ is called a permutation of X

The permutations of a set form a group S_X under composition of functions, with identity element $i\underline{d}_X: X \to X$.

$$id_{x}(x) = x$$

 $f(g(h(x))) = (f(g(h(x))) = (f(g(h(x))))$
 $f(g(h(x))) = (f(g(h(x))) = (f(g(h(x))))$
 $f(g(h(x))) = (f(g(h(x))))$

If X is finite with n elements then S_X has n! elements.

is finite with
$$n$$
 elements then DX has n : elements.

 $X = \begin{cases} x_1 & x_2 \\ x_1 & x_2 \\ \vdots & x_n \end{cases}$
 $X = \begin{cases} x_1 & x_2 \\ \vdots & x_n \end{cases}$
 $X = \begin{cases} x_1 & x_2 \\ \vdots & x_n \end{cases}$
 $X = \begin{cases} x_1 & x_2 \\ \vdots & x_n \end{cases}$

If X is finite with n elements we can assume

$$X = \{1, 2, \dots, n\}.$$

The permutations of this set X is called the symmetric group on nn! denonts. elements and written S_n .

Multiplication of Permutations

An element $\sigma \in S_n$ sending $\sigma(i) = x_i$ can be written

ending
$$\sigma(i) = x_i$$
 can be written
$$\sigma(i) = x_i$$
 and $\sigma(i) = x_i$ and $\sigma(i) = x_i$

Multiplication is composition of functions and goes right to left.

$$\sigma = \frac{\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}}{\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}}$$

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 \end{pmatrix}$$

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \Rightarrow \Theta$$

$$\sigma = \begin{pmatrix} 1$$