Every permutation is a product of transposilions
 DEFINITION:
 A transposition is a cycle of length 2.

Proposition: Every permutation can be written (in many ways) as a product of transpositions. (The identity is a product of zero transpositions).

Proof: It suffices to show that a cycle is a product of transpositions. For that:
Every $\sigma \in S_{n}$ is a produce of disjoint cycles
$\sigma=r_{1} r_{2} \ldots r_{k}$ when each r is a

$$
\vec{T} \operatorname{q}^{a_{2}} a_{3} \quad\left(a_{1} a_{2} a_{3} a_{4} \cdots \cdot a_{n-1} a_{n}\right)
$$

$$
\begin{aligned}
(1325) & =(15)(12)(13) \\
& =(1325)
\end{aligned}
$$

$$
(1325)=(15)(15)(15)(12)(13)
$$

$$
(\underbrace{a_{1} a_{2} \cdots a_{n}})=\left(a_{1} a_{n}\right)\left(a_{1} a_{n-1}\right)\left(a_{1} a_{n-2}\right) \cdots\left(a_{1} a_{4}\right)\left(a_{1} a_{3}\right)\left(a_{1} a_{2}\right)
$$

Remark: Any list can be sorted by repeatedly exchanging two elements.

Even and odd permutations
Theorem: Suppose the identity is written as a product of r transpositions:

$$
e=\tau_{1} \tau_{2} \cdots \tau_{r}
$$

Then r is an even number.
Proof: $\quad e=(15)(15)$
Byinduction: cant occur $\quad r=1$ since $e=\tau_{1}$ $\tau_{1}=(a b) \neq e$ so $e \neq a n y$ transpositions
For induction we ansome that of C is aproduct of r, wee of fewer than n transpositions $(r<n)$ then r is
r is even.

$$
e_{0}=\tau_{1} \ldots \tau_{n}
$$

$$
\tau_{a-1}=4 \text { possibilities }
$$

$$
\tau_{n}=(a b)
$$

(1) $\tau_{n-1}=(c d) \quad c, \partial \neq a, b$.
(2) $\tau_{n-1}=(a c)$
(3) $\tau_{n-1}=(b c)$
(4) $\tau_{n-1}=(a b)$.
case (4). $\tau_{n-1}=(a b) \quad \tau_{n}=(a b) \quad(a b)(a b)=c$

$$
e=\tau_{1} \ldots . . \tau_{n-2} \underbrace{(a b)(a b)}_{n-1} \Rightarrow \tau_{1} \cdots \tau_{n-2}=e
$$

Byindichion $n-2$ is even so n is even.
Care (1). $(c d)(a b)$ $=(a b)(c d)^{2}$ since dispo
a occus in τ_{n-1}, not τ_{n}

Care (2) $\quad(a c)(a b)=(a b c)=(b c a)=(b a)(b c)$

$$
\begin{aligned}
&(a c)(a b)(a b c) \\
& \tau_{n-1} \tau_{n} \\
& \text { aoccus in } \tau_{n-1}, \text { not } \tau_{n}
\end{aligned}
$$

Cave 3: $(b c)(a b)=(a \subset b)=(c b a)=(c a)(c b)$ a in τ_{n-1}, not τ_{n}.

$$
e=\tau_{1} \cdots \tau_{n-1} \tau_{n}
$$

Look at $\tau_{n-2} \tau_{n-1}$
repeat- esth cancel ($n-2$ even, so n even)
OR move a to the eft one skep.
a in τ_{n-2}, but not τ_{n-1}, τ_{n}.
Repect: either there's a cancellation so by indritm a is even.
OR a appears in τ but not $\tau_{2}, \ldots . . \tau_{n}$. of that happens our e mores a!

$$
e=\tau_{1} \cdots \cdots \tau_{n}
$$

That cant hapten! e dresn't move anything! Conclude that cancellitu happens somculere,
$e=a-\infty$ product of $n-2$ trans posituns,
$a-2$ even by induchur
$\Rightarrow \quad n$ even.

Theorem: Let $\sigma \in S_{n}$ be a permutation. Then either every expression of σ as a product of transpositions has an even number of transpositions, or every such expression has an odd number of transpositions. In the first case σ is called an even permutation, in the second it is called odd.

$$
\begin{aligned}
& (a b) \quad \text { odd } \quad 1 \text { transposich }) \\
& (a b c)=(a c)(a b) \quad(2 \text { trans so even) }
\end{aligned}
$$

Proof:
τ_{i} are transpocitus

$$
\sigma=\alpha_{1} \ldots . \alpha_{k}
$$

d_{i} we transpositus

$$
\begin{aligned}
& \sigma^{-1} \sigma=\left(\alpha_{1} \cdots \alpha_{k}\right)^{-1}\left(\tau_{1} \cdots \cdot \tau_{m}\right) . \\
& \left(Q \alpha_{1} \cdots \alpha_{k}\right)^{-1}=\alpha_{k}^{-1} \cdots \cdots \alpha_{1}^{-1}=\alpha_{k} \cdots \cdots \alpha_{1} \\
& \alpha=(x y) \quad \alpha^{2}=(x y)(x y)=e \\
& \sigma^{-1} \sigma=e=\alpha_{k} \alpha_{n-1} \cdots \alpha_{1} \tau_{1} \cdots \cdot \tau_{m}
\end{aligned}
$$

$K+m$ is even.
k, m both ora or both even.

$$
\begin{aligned}
& (132)=(12)(13) \quad \text { even } \\
& (1234)=(14)(13)(12) \quad \text { odd }
\end{aligned}
$$

Lemma: A cycle is even \Leftrightarrow t's length is odd.

Prop: Product of even permutations is even

$$
\begin{aligned}
& \text { even } \cdot \partial \partial \partial \rightarrow 0 \partial \partial \\
& \text { od z. } \partial \partial \partial \rightarrow \text { even. }
\end{aligned}
$$

The Alternating Group
Definition: The subset of S_{n} consisting of even permutations is a subgroup called the alternating group A_{n}. It has $n!/ 2$ elements.
Prog: $A_{n}=\left\{\sigma \in S_{n} \mid \sigma\right.$ is even $\}$.
A_{n} is a subgroup.
let $\sigma, \tau \in A_{n}$.
check $\delta \tau^{-1} \in A_{n}$.

$$
\begin{aligned}
& \sigma=\alpha_{1} \cdots \alpha_{m} \quad m \text { even. } \\
& \tau=\beta_{1} \cdots \beta_{r} \quad r \text { even } \\
& \sigma \tau^{-1}=\alpha_{1} \cdots \alpha_{m}\left(\beta_{1} \ldots \beta_{r}\right)^{-1}
\end{aligned}
$$

$$
=\underbrace{\alpha_{1} \cdots \alpha_{m}}_{m} \frac{\beta_{r} \cdots \beta_{1}}{r} \text { mir even }
$$

so $\sigma \tau^{-1}$ is even

$$
\left|A_{n}\right|=n!/ 2
$$

Pick a transposition.

$$
\begin{aligned}
& \sigma \tau^{-\lambda} \in A_{n} . \\
& B=\left\{\sigma \in S_{n} \mid \sigma \text { is odd }\right\} \\
& A_{n} \cup B=S_{n} \quad A_{n} n B=\varnothing
\end{aligned}
$$

$(12) \quad \sigma \in A_{\text {a }}$

$$
\begin{aligned}
& \lambda: A_{a} \rightarrow B \\
& \lambda(\sigma)=\sigma(12) \\
& \lambda^{-1}(\tau)=\tau(12)
\end{aligned}
$$

$$
\begin{aligned}
& { }^{4} \\
& \lambda^{-1}(\sigma)=\sigma(12)(12)=\sigma \\
& \lambda^{-1}(\tau)=\tau(12)(12)=\tau
\end{aligned}
$$

$$
\begin{aligned}
& \lambda \lambda(\sigma)=\tau(12)(12)=\tau \\
& \lambda \lambda^{-1}(\tau)=\tau
\end{aligned}
$$

Since λ is bigetive (it has an inverse),

$$
\begin{array}{ll}
\left|A_{n}\right|=|B| . & \left|A_{n}\right|+|B|=n! \\
& \left|A_{n}\right|=n!/ 2 \text { elements. }
\end{array}
$$

The group A_{4}

$$
\begin{array}{lll}
(12) & 4!=24 \quad 4!/ 2=12 \\
e & (123) & (132) \\
(124) & (142) & (13)(24) \\
(134) & (143) & (14)(23) \\
(234) & (243)
\end{array}
$$

e identity
83 cycles
3 products of 2 transpositions.

