Every permutation is a product of transpositions (23) 2^{3}

DEFINITION: A *transposition* is a cycle of length 2.

Proposition: Every permutation can be written (in many ways) as a product of transpositions. (The identity is a product of zero transpositions).

Proof: It suffices to show that a cycle is a product of transpositions. For that.

Remark: Any list can be sorted by repeatedly exchanging two elements.

13524	
13254	(34)
12354	(23)(34)
12345	$(\underline{45})(23)(34)$

Even and odd permutations

Theorem: Suppose the identity is written as a product of r transpositions:

$$e = \tau_1 \tau_2 \cdots \tau_r.$$

Then r is an even number.

Proof:
$$C = (16)(15)$$

By induction: $T_{1}^{0} = r = 1$ ($T_{2}^{0} = 2$ ($an't = 0$ con't $e = T_{1}$,
 $T_{1} = (ab) + e$ so $e + any transpositions$
For induction we around that if c is a product of f ,
where of flower than n transpositions $(r < n)$ then r is
 $even$. $e = T_{1} - T_{n}$
 $T_{n-1} = 4$ possibilities
 $T_{n} = (ab)$
 $T_{n-1} = (cd) c_{0} + a_{1}b$. $T_{n-1} = (ac)$ $T_{n-1} = (bc)$
 $T_{n-1} = (cd)$.
 $T_{n-1} = (ab)$.
 $Care(9, T_{n-1} = (ab)$.
 $Care(9, T_{n-1} = (ab)$ $T_{n} = (ab)$ $(ab)(eb) - e$
 $e = T_{1} - \cdots - T_{n-2} - (ab)$ $(ab)(eb) - e$
 B_{1} indiction $n - 2$ is even so n is even.
 $T_{n} = (ab)(cd)$ $Commute$.
 $e = (ab)(cd)$ $Commute$.
 $e = (ab)(cd)$ $Commute$.

Theorem: Let $\sigma \in S_n$ be a permutation. Then either every expression of σ as a product of transpositions has an even number of transpositions, or every such expression has an odd number of transpositions. In the first case σ is called an *even* permutation, in (abc) = (ac) (abc) (2 trans so even) the second it is called odd.

Proof:

o ESn T: are transpositions 0 - T, Tm di are transpositions J= di dx $\sigma^{-1}\sigma = (d_1 \cdots d_n)^{-1} (\tau_1 \cdots \tau_m).$ $(ad_1\cdots dk_n)^{-1} = \overline{d_k}\cdots \overline{d_n}^{-1} = d_k\cdots d_n$ $\alpha = (xy)$ $\lambda^2 = (xy)(xy) = e$ $0^{-1} \sigma = \mathcal{C} = d_{\mathbf{x}} d_{\mathbf{n}_1} \cdots d_{\mathbf{x}_l} \overline{\tau_l} \cdots \overline{\tau_m}$ K+M is even. K, m both odd or both even.

$$(132) = (12)(13) \quad \text{even}$$

$$(1234) = (14)(13)(12) \quad odd$$

$$(1234) = (14)(13)(12) \quad odd$$

$$(123)(156) \quad (18910) \quad even \quad even \quad even$$

$$(123)(156) \quad (18910) \quad even \quad even$$

$$(123)(123) \quad (123)(12) \quad (123)(1$$

The Alternating Group

Definition: The subset of S_n consisting of even permutations is a subgroup called the alternating group A_n . It has n!/2 elements.

Prof:
$$A_n = \left\{ \sigma \in S_n \right\} \sigma \text{ is even} \right\}$$

An is a subgroup.
(ef $\sigma, \tau \in A_n$.
 $Check \sigma \tau' \in A_n$.
 $\sigma = d_1 \cdots d_m \qquad m \text{ even}$.
 $\tau = \beta_1 \cdots \beta_r \qquad r \text{ even}$
 $\sigma \tau' = d_1 \cdots d_m \left(\beta_1 \cdots \beta_r\right)'$
 $= d_1 \cdots d_m \left(\beta_r \cdots \beta_r\right)'$
 $= d_1 \cdots d_m \left(\beta_r \cdots \beta_r\right)'$
 $r = d_1 \cdots d_m \left(\beta_r \cdots \beta$

Since
$$X^{-1s}$$
 by potence (it has an inverse),
 $|A_n| = |B|$, $|A_n| + |B| = n!$
 $|A_n| = n!/2$ elements.

The group
$$A_4$$

(12) $4!=2\xi$ $4!/2=12$.
(12) $(12)(34)$
(12) $(12)(34)$
(12) (142) (12) (24)
(12) (14)
(13) (24)
(13) $(14)(23)$
(13) (24)
(13) (24)
(13) (24)
(13) (24)
(13) (24)
(13) (24)
(13) (24)
(13) (24)
(13) (24)
(13) (24)
(13) (24)
(13) (24)
(13) (24)
(13) (23)
(23) (234) $(14)(23)$
(23) (234) (243)
(14) (23)
2 products of 2 transpositums.