Cycles

Cycles are a more efficient way to work with permutations. A *cycle* σ of length k is a permutation of the form

$$\sigma(a_1)=a_2, \sigma(a_2)=a_3, \ldots, \sigma(a_k)=a_1$$
 , cycle

- We write $(a_1 \ a_2 \ a_3 \ \cdots \ a_k)$ as a shorthand for this cycle.
- If an index i isn't mentioned in a cycle σ , it is fixed, so $\sigma(i) = i$.

$$\sigma = \underbrace{(135)(42)}_{\text{T}} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix} \qquad \begin{array}{c} \sigma = (135) \\ \sigma$$

• Cycles are multiplied right to left as with permutations generally

$$\sigma = (\underline{13542})$$

$$\tau = (\underline{34})$$

$$\sigma\tau = (\underline{13542})(\underline{34}) =$$

$$(\underline{13542})(\underline{45})$$

Disjoint Cycles Commute

Proposition: Two cycles $\underline{\sigma} = (a_1 a_2 \cdots a_k)$ and $\underline{\tau} = (b_1 b_2 \cdots b_r)$ are disjoint if $a_i \neq b_j$ for all pairs $1 \leq i \leq k$ and $1 \leq j \leq r$. If σ and $\underline{\tau}$ are disjoint cycles, then $\sigma \underline{\tau} = \tau \sigma$.

Proof:

$$\sigma \tau = (\alpha_1 \alpha_2 \dots \alpha_k)(b_1 \dots b_r)$$
 $\tau \sigma = (b_1 \dots b_r)(\alpha_1 \dots \alpha_k)$
 $\sigma \tau(\alpha_i) = \sigma(\alpha_i) = \alpha_2 \quad \sigma \tau(\alpha_i) = \sigma(\alpha_i) = \alpha_{i+1}$
 $\sigma \tau(\alpha_i) = \tau(\alpha_2) = \alpha_2 \quad \tau \sigma(\alpha_i) = \tau(\alpha_{i+1}) = \alpha_{i+1}$
 $\sigma \tau(\alpha_k) = \sigma(\alpha_k) = \alpha_1 \quad \tau \sigma(\alpha_k) = \tau(\alpha_1) = \alpha_1$
 $\sigma \tau(b_i) = \sigma(b_{i+1}) \quad i \leq i < r$
 $\sigma \tau(b_i) = \tau(b_i) = b_{i+1} \quad i \leq i < r$

Checking all these cases shows $\sigma \tau = \tau \sigma$.

Products of disjoint cycles

ducts of disjoint cycles
$$\sigma = \begin{pmatrix} \frac{1}{6} & \frac{2}{4} & \frac{3}{4} & \frac{5}{6} & \frac{6}{2} \end{pmatrix} = \begin{pmatrix} 1 & 6 & 2 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 6 & 2 & 4 \end{pmatrix}$$

$$\tau = \left(\frac{1}{3} \frac{2}{2} \frac{3}{1} \frac{4}{5} \frac{5}{6} \frac{6}{4}\right) = (13)(456)$$

$$(13)(456)$$

Every permutation is a product of disjoint cycles

Proposition: Any permutation $\sigma \in S_n$ can be written as a product $\sigma = \sigma_1 \sigma_2 \cdots \sigma_r$ where the σ_i are disjoint cycles.

Proof:

bokat 1,
$$\sigma(1)$$
, $\sigma^{2}(1)$, ..., $\sigma^{2}(1)$ $\sigma^{2}(1) = 1$.

 $X_{1} \subseteq \{1, \dots, n\}$ $X_{1} = \{1, \sigma(1), \dots, r^{n}(1)\}$ r elements.

By Choose $a_{1} \in \{1, \dots, n\}$ $a_{1} \in X_{1}$.

 $X_{2} = \{a_{1}, \sigma(a_{1}), \sigma^{2}(a_{1}), \dots, \sigma^{2}(a_{n})\}$ r_{1} elements.

Choose $a_{2} \in \{1, \dots, n\}$ $a_{3} \in X_{1} \cup X_{2}$
 $X_{3} = \{a_{3}, \sigma(a_{3}), \dots, \sigma^{2}(a_{n})\}$ r_{3} elements.

 $X_{4} = \{a_{4}, \sigma(a_{3}), \dots, \sigma^{2}(a_{n})\}$ r_{3} elements.

 $x_{5} = \{a_{5}, \sigma(a_{5}), \dots, \sigma^{2}(a_{n})\}$ $r_{5} = \{a_{5}, \sigma(a_{5}), \dots, \sigma^{2}(a_{5})\}$ $r_{5} = \{a_{5}, \sigma(a_{5}), \dots, \sigma^{2$