
Cycles
Cycles are a more e�cient way to work with permutations. A cycle
‡ of length k is a permutation of the form

‡(a1) = a2, ‡(a2) = a3, . . . , ‡(ak) = a1

• We write (a1 a2 a3 · · · ak) as a shorthand for this cycle.
• If an index i isn’t mentioned in a cycle ‡, it is fixed, so ‡(i) = i.

‡ = (135)(42) =
Q

ca
1 2 3 4 5
3 4 5 2 1

R

db

• Cycles are multiplied right to left as with permutations generally

‡ = (13542)
· = (34)

‡· = (13542)(34) =

1
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Disjoint Cycles Commute
Example:

(132)(45) = (45)(132)

Proposition: Two cycles ‡ = (a1a2 · · · ak) and · = (b1b2 · · · br)
are disjoint if ai ”= bj for all pairs 1 Æ i Æ k and 1 Æ j Æ r. If ‡
and · are disjoint cycles, then ‡· = ·‡.

Proof:
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Products of disjoint cycles

‡ =
Q

ca
1 2 3 4 5 6
6 4 3 1 5 2

R

db

· =
Q

ca
1 2 3 4 5 6
3 2 1 5 6 4

R

db
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Every permutation is a product of disjoint cy-
cles
Proposition: Any permutation ‡ œ Sn can be written as a product
‡ = ‡1‡2 · · · ‡r where the ‡i are disjoint cycles.

Proof:
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