Cycles

Cycles are a more efficient way to work with permutations. A cycle σ of length k is a permutation of the form

$$
\sigma\left(a_{1}\right)=a_{2}, \sigma\left(a_{2}\right)=a_{3}, \ldots, \sigma\left(a_{k}\right)=a_{1}{ }^{d_{k}} \text { cycle } . \ldots a_{\not}
$$

- We write $\left(a_{1} a_{2} a_{3} \cdots a_{k}\right)$ as a shorthand for this cycle.
- If an index i isn't mentioned in a cycle σ, it is fixed, so $\sigma(i)=i$.

$$
\begin{aligned}
& \sigma \in S_{S}
\end{aligned}
$$

$$
\begin{aligned}
& \sigma=(135) \\
& \sigma(1)=3, v(3)=S \\
& \begin{array}{ll}
\sigma(s)=1 & \sigma(2)=2 \\
\sigma(x)=4
\end{array}
\end{aligned}
$$

- Cycles are multiplied right to left as with permutations generally

$$
\begin{array}{r}
\sigma=\underline{(13542)} \\
\tau=(\underline{34)} \\
\sigma \tau=(\underset{\sim}{13542)(34)}+ \\
(132)(45)
\end{array}
$$

Disjoint Cycles Commute
Example:

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 1 & 2 & 5
\end{array}\right)=(132)(45)=(45)(132)=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 1 & 2 & 5 & 4
\end{array}\right)
$$

Proposition: Two cycles $\sigma=\left(a_{1} a_{2} \cdots a_{k}\right)$ and $\tau=\left(b_{1} b_{2} \cdots b_{r}\right)$ are disjoint if $a_{i} \neq b_{j}$ for all pairs $1 \leq i \leq k$ and $1 \leq j \leq r$. If σ and τ are disjoint cycles, then $\sigma \tau=\tau \sigma$.

$$
\begin{aligned}
\text { Proof: } & =\left(a_{1} a_{2} \ldots a_{k}\right)\left(b_{1} \ldots . b_{r}\right) \\
\sigma \tau & =\left(b_{1} \ldots b_{r}\right)\left(a_{1} \ldots a_{k}\right) \\
\tau \sigma & =\sigma\left(a_{1}\right)=a_{2} \quad \sigma \tau\left(\underline{a_{i}}\right)=\sigma\left(a_{i}\right)=a_{i+1} \\
\frac{\sigma \tau\left(a_{i}\right)}{\tau \sigma\left(a_{1}\right)} & =\tau\left(a_{2}\right)=a_{2} \quad \tau \sigma\left(\underline{a_{i}}\right)=\tau\left(a_{i+1}\right)=a_{i+1} \\
\sigma \tau\left(a_{k}\right) & =\sigma\left(a_{k}\right)=a_{1} \quad \tau \sigma\left(a_{k}\right)=\tau\left(a_{1}\right)=a_{2} \\
\sigma \tau\left(b_{i}\right) & =\sigma\left(b_{i+1}\right) \quad 1 \leq i<r \\
& =\left(b_{i+1}\right. \\
\tau \sigma\left(b_{i}\right) & =\tau\left(b_{i}\right)=b_{i+1} \quad(\leq i<r
\end{aligned}
$$

checking all these cases shows o $\tau=\tau \sigma$.

Products of disjoint cycles

$$
\begin{aligned}
\sigma=\left(\begin{array}{llllll}
1 & 2 & 3 & \underline{4} & 5 & \underline{6} \\
\underline{6} & \underline{4} & 3 & 1 & 5 & \underline{2}
\end{array}\right)=\left(\begin{array}{lllll}
1 & 6 & 2 & 4
\end{array}\right) \\
\left(\begin{array}{llllll}
& 6 & 2 & 4
\end{array}\right.
\end{aligned}
$$

$$
\left.\begin{array}{c}
\tau=\left(\begin{array}{lllll}
\frac{1}{3} & \frac{2}{2} & \frac{3}{1} & \frac{4}{5} & \frac{6}{6} \\
\underline{4}
\end{array}\right)=(13)(456) \\
(1
\end{array} \frac{3}{2}\right)\left(\begin{array}{lll}
4 & 5 & 6
\end{array}\right)
$$

Every permutation is a product of disjoint rycles

Proposition: Any permutation $\sigma \in S_{n}$ can be written as a product $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{r}$ where the σ_{i} are disjoint cycles.

Proof:
$\sigma \in S_{n}$
Lookat $1, \sigma(1), \sigma^{2}(1), \ldots, \sigma^{\sigma}(1) \quad \sigma^{n+1}(1)=1$.
$X_{2} \subseteq\left\{1, \ldots, n^{n}\right\} \quad X_{1}=\left\{1, \sigma(1) \ldots, \sigma^{n}(1)\right\} \quad r$ elands.
Choose $a_{2} \in\{1, \ldots, n\}, \quad a \notin X_{1}$.

$$
X_{2}=\left\{a, \sigma(a), \sigma^{2}(a) \ldots, \sigma^{r_{2}}(a)\right\}
$$

r_{2} element.
Choose $a_{3} \in\{1, \ldots, a\} \quad a_{3} \& X_{1} \cup X_{2}$

$$
X_{s}=\left\{a_{3}, \sigma\left(a_{3} \lambda \ldots, \sigma^{r_{3}}\left(a_{3}\right)\right\}, \quad r_{3}\right. \text { elements. }
$$

Finitely steps.

$$
\begin{aligned}
& \text { Finitely steps. } \\
& X=X_{1} \cup X_{2} \ldots, \cup X_{s} \quad \text { \&bs are disjout. } \\
& \sigma=\left(1 \sigma(1), \ldots, \sigma^{r}(1)\right)\left(a_{2}, \sigma\left(a_{2}\right), \ldots, \sigma^{r}\left(a_{c}\right)\right)(\quad)()
\end{aligned}
$$

gave X_{i} if $\left|X_{i}\right|=1$.
$u \in X \quad u \in X_{i}$ for save $i \quad u=\sigma^{\prime}\left(a_{i}\right)$

$$
\sigma(a)=\sigma^{i+1}\left(a_{i}^{i}\right)
$$

