Roots of Unity
Polar and rectangular form of complex numbers
Brief review of polar and rectangular form of complex numbers.

$$
\Gamma=\left\{a+b i \mid a, b \in \mathbb{R}, \quad i^{2}=-1\right\}
$$

$$
\begin{aligned}
r^{2} & =a^{2}+b^{2}=\|g\|^{2} \\
b & =r \sin \theta \\
a & =r \cos \theta
\end{aligned}
$$

$z=r(\cos \theta+i \sin \theta)=r e^{i \theta}$ definition: $\operatorname{cis}(\theta)=\cos \theta+i \sin \theta$

$$
z=r \cos (\theta)
$$

$$
z_{1}=r_{1} \operatorname{cis}\left(\theta_{1}\right)
$$

$$
z_{1} y_{2}=r_{1} r_{2} \operatorname{cis}\left(\theta_{1}\right) \operatorname{cis}\left(\theta_{2}\right)
$$

$$
\left.\begin{array}{c}
\left(\cos \theta_{1}+i \sin \theta_{1}\right)\left(\cos \left(\theta_{2}\right)+i \sin \theta_{2}\right) \\
=(
\end{array}\right)+i(,)
$$

$$
=\left(\sum_{\tau}\right)+i\left(\sum_{\text {addict in laws }}\right)
$$

addict in laws l_{n} sin, cos

The circle group

$$
\mathbb{T}=\{z \mid z=\cos (\theta), \theta \in \mathbb{R}\}
$$

$$
\begin{aligned}
& \theta 1=\operatorname{cis}(0) \text { If } \pi \\
& \theta z=\operatorname{cis}(\theta) \\
& z^{-1}=\operatorname{cis}(-\theta) \operatorname{since} \\
& \operatorname{cis}(\theta) \operatorname{cis}(-\theta)=\operatorname{cis}(0)=2
\end{aligned}
$$

abelian.

$$
\begin{aligned}
& \text { delian. } \\
& \operatorname{cis}(\theta) \operatorname{cis}(\tau)=\operatorname{cis}(\theta+\tau) \\
&=\cos (\tau+\theta) \\
&=\operatorname{cis}(\tau) \operatorname{css}(\theta
\end{aligned}
$$

Roots of unity
Fix an integer $n>0$. For any integer k, let $z(k)=\operatorname{cis}\left(\frac{2 k \pi}{n}\right)$.
Proposition: The $z(k)$ have the following properties:

- $z(k) z(j)=z(k+j)$.
- $z(k)^{m}=z(k m)$.
- $z(k)=1$ if and only if $n \mid k$. More generally $z(i)=z(j)$ if and only if $i \equiv j(\bmod n)$.

$$
\begin{aligned}
& z(k)=1 \Leftrightarrow n \mid k . \\
& z(k)=\cos \left(\frac{2 k \pi}{n}\right)=1 \text { only f }
\end{aligned}
$$

$\frac{2 k \pi}{a}$ is an integer multiple of 2π

$$
\begin{aligned}
& n=4 \\
& z(k)=\operatorname{cis}\left(\frac{k \pi}{4}\right) \\
&=\operatorname{cis}\left(\frac{k \pi}{2}\right)
\end{aligned}
$$

PROOF:

$$
\begin{aligned}
& \cdot z(k) z(j)=z(k+j) \\
& \operatorname{cis}\left(\frac{2 k \pi}{n}\right) \operatorname{cs}\left(\frac{2 j \pi}{n}\right) \\
&=\operatorname{cis}\left(\frac{2(k+j) \pi}{n}\right) \\
&=3(k+\tilde{y}) \\
& \cdot z(k)^{m}=3(m k) m \\
& z^{(k)^{m}}=z(k+\cdots+3 k) \\
&=z(k m)
\end{aligned}
$$

$$
z(i)=z(j) \Leftrightarrow z(i-j)=1
$$

$\Leftrightarrow \quad i-j$ is a molriple of 3 $n \Leftrightarrow i \equiv j \bmod n$.

Proposition: For any integer $n>0$, the distinct complex solutions to the polynomial equation $\underline{z}^{n}=1$ are the complex numbers $z(i)$ for $i=0, \ldots, n-1$. These solutions form a cyclic group of order n that we will call μ_{n}.

Proof: From the preceeding proposition, we know that the $z(i)$ are distinct for $i=0, \ldots, n-1$ and satisfy $z(i)^{n}=1$. Further, $z(i)=z(1)^{i}$ so $z(1)$ is a generator for μ_{n}.

$$
z(i)=z(1)^{i} \text { so } z(1) \text { is a generator for } \mu_{n} . \quad \text { so } z(n i) \quad n i \equiv 0 \bmod n \quad .
$$

$z(0), z(i) \ldots, \ldots(n-1)$ are different and there are n of them. $z(i)$ are a subgroup

$$
\begin{aligned}
& z(i) z(-j)=z(i-j) \in \mu_{n} \\
& z(1), z(1)^{2}=z(1), z^{2}(1)^{3}=z(3), \ldots, z(1)^{n}=z(n)=z(0) \\
& \mu_{n} \text { is a cyclic ono rp of oder } n \text {. }
\end{aligned}
$$

Proposition:
These generators are called primitive roots of unity.
amodg: $\{z(0), z(1), \ldots\},(n-1)\}=\mu_{n}$
$z(j)$ is a geverater of μ_{n} means

$$
\begin{aligned}
z(j)^{k}=1 & \Leftrightarrow n\left|j k \Leftrightarrow \frac{n}{d}\right| k \text { where } \\
& d=\operatorname{gcd}(n, j) .
\end{aligned}
$$

$\alpha>1$, then $z(j)^{n / d}=1$ so $z(j)$ not a gereantor $\langle g(y)\rangle$ is not eventing. $d=1$ then $z(j)$ is a gervecah.

Example
Suppose $n=12$.

$z(j)$ called primitive of it generates μ_{n}.

