Properties of cyclic subgroups and groups
Proposition: Let G be a group and $g \in G$. The subset

$$
\langle g\rangle=\left\{g^{n}: n \in \mathbb{Z}\right\}
$$

is a subgroup of G.
Proof: $A H \subseteq G$ a subset, the H is a subgroup of:

$$
\therefore H \neq \varnothing
$$

$$
\begin{aligned}
& \text {) } H \neq \phi \\
& \text { 2) If } a, b \in H, \quad a b^{-1} \in H .
\end{aligned}
$$

Clearly $\langle g\rangle \neq \psi$ since $g \in\langle g\rangle$.
if $a, b \in H$, plan $a=g_{r-s}^{r}$ and $b=g^{s}$ so

$$
\begin{aligned}
& a, b \in H \text {, pen } a=g^{r-s} \\
& a b^{-1}=g^{r}\left(g^{-s}\right)=g^{\text {and }} r-s \in \mathbb{Z}
\end{aligned}
$$

so $g^{n-s} \in\langle g\rangle$. Therefore $\langle g\rangle$ is a subglap of a.

Proposition: Let G be a group and $g \in G$. Then $\langle g\rangle$ is the smallest subgroup of G containing g, in the sense that, if $\bar{H} \subset G$ is a subgroup, and $g \in H$, then $\langle g\rangle \subset H$.
Proof: if $H \subseteq G$ is a subgroup and $g \in H_{J}$ then $g^{r} \in H$ for all $r=1,2, \ldots$.
$\left.g, g^{2}, g^{3}\right) \ldots \in H$ since H is closed under multiplication

$$
g^{-1} \in H, \quad g^{-2}, g^{-3}, \ldots \in H
$$

also $e \in H$.
so $\langle g\rangle \subseteq H$.

Proposition: A cyclic group is abelian.
Proof: let $a_{j} b \in G=\langle g\rangle$.
Hen $a=g^{r}$
and $b=g^{s}$
for $r, s \in \mathbb{Z}$.
Terfue $\quad a b=g^{r} g^{s}=g^{r+s}=g^{s+r}=g^{s} g^{r}=b a$.
So we see that G is abelian.

Proposition: Every subgroup of a cyclic group is cyclic. Well ordering Principle: Every non-emply set of positive integus hus a least element.
Proof: $G=\langle g\rangle . \quad H \subseteq G$ is a subgroup.

- Care 1. $H=\{e\}$. In this care H is cyclic, H 's $=\langle e\rangle$.
- Care 2. $H \neq\{e\}$. So there is an $h \in H$, with $h \neq e$.

Since G is cyclic, $h=g^{r}$ for some $r \in \mathbb{Z}$. Entleh $r>0$
or $r<0$. If $r<0$, then $h^{-1}=g^{-r}$, and $h^{-1} \in H .-r>0$.

$$
X=\left\{r \in Z, r>0: g^{r} \in H\right\} \neq \varnothing
$$

Lot t be the smallest element of X. $a=g^{t}$. Claim that $H=\langle a\rangle$. To see this, pick $b \in H$. $b=g^{s}$ for some $s \in \mathbb{Z}$.

Write: $S=m t+r$
$0 \leq r<t$. division ${ }^{\prime}$ w/ remains

$$
\begin{aligned}
& b=g^{m t+r}=g^{m t} \cdot g^{r}=a^{m} \cdot g^{r} \\
& g^{r}=\underline{a}^{-m} b \in H
\end{aligned}
$$

r must he O sine t is smallest pos. Integer with $g^{t} \in H$. If $r=0$, we have $e=a^{-m} b$ or $b=a^{m}$, $b=a$ '
$H=\langle a\rangle$ and H is cydic.

Corollary: The subgroups of \mathbb{Z} are $n \mathbb{Z}$ for $n=0,1,2, \ldots$

$$
H \subseteq \text { I. } H=\{0\} \quad O R
$$

choose smallest positive integer in H. Call that n. It follows that

$$
H=\langle n\rangle=n \mathbb{Z}
$$

