
Properties of cyclic subgroups and groups
Proposition: Let G be a group and g œ G. The subset

ÈgÍ = {g
n : n œ Z}

is a subgroup of G.
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Proposition: Let G be a group and g œ G. Then ÈgÍ is the
smallest subgroup of G containing g, in the sense that, if H µ G is
a subgroup, and g œ H , then ÈgÍ µ H .
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Proposition: A cyclic group is abelian.
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Proposition: Every subgroup of a cyclic group is cyclic.
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Corollary: The subgroups of Z are nZ for n = 0, 1, 2, . . ..
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