Properties of cyclic subgroups and groups Proposition: Let G be a group and $g \in G$. The subset

$$\langle g \rangle = \{g^n : n \in \mathbb{Z}\}$$

is a subgroup of G. <u>Proof</u>: AHSG a subst, the His a subgroup iff: i) H + Ø z) If a, beH, ab^TeH. Cherly < g> + Ø since ge < g?. if a, beH, Hen a=g and b=g so if a, beH, Hen a=g and r-seZ ab^T = g^T(g^T). - g^T and r-seZ so g^{-S} e < g?. Therefore < g? is a subgroup of G. **Proposition:** Let G be a group and $g \in G$. Then $\langle g \rangle$ is the smallest subgroup of G containing g, in the sense that, if $\overline{H \subset G}$ is a subgroup, and $g \in H$, then $\langle g \rangle \subset H$.

Proof: if
$$H \subseteq G$$
 is a subgroup and $g \in H$, then
 $g' \in H$ for all $r = 1, 2, ----$
 $g, g^2, g^3, --- \in H$ since H is closed under multipleum,
 $g' \in H, g^2, g^3, --- \in H.$
also $e \in H.$
so $\chi g \gamma \in H.$

Proposition: A cyclic group is abelian.

Proof: let
$$a, b \in G = xg7$$
.
Hen $a = g^{r}$
and $b = g^{s}$
for $r, s \in \mathbb{Z}$.
Thefre $ab = g^{r}g^{s} = g^{r+s} = g^{s}g^{r} = ba$.
So we see that G is abelian.

Proposition: Every subgroup of a cyclic group is cyclic.

Proposition: Every subgroup of a cyclic group is cyclic.
Well ordering Principle: Every non-empty set of positive integres
has a least element.
Proof:
$$G = \langle g \rangle$$
. $H \subseteq G$ is a subgroup.
• Care 1. $H = \{e\}$. In this case H is cyclic, $H's = \langle e \rangle$.
• Care 2. $H \neq \{e\}$. So there is an hell, with $h \neq e$.
• Care 2. $H \neq \{e\}$. So there is an hell, with $h \neq e$.
• Care 2. $H \neq \{e\}$. So there is an hell, with $h \neq e$.
• Care 2. $H \neq \{e\}$. So there is an hell, with $h \neq e$.
• Care 2. $H \neq \{e\}$. So there is an hell, with $h \neq e$.
• Care 2. $H \neq \{e\}$. So there is an hell, with $h \neq e$.
• Care 2. $H \neq \{e\}$. So there is an hell, with $h \neq e$.
• Care 2. $H \neq \{e\}$. So there is an hell, with $h \neq e$.
• Care 2. $H \neq \{e\}$. So there is an hell, with $h \neq e$.
• Care 2. $H \neq \{e\}$. So there is an hell, with $h \neq e$.
• $G = g$. $G = g$ for some $r \in \mathbb{Z}$. Extent $r > 0$.
• $f = \{r \in \mathbb{Z}, r > 0\}$: $g^r \in H \neq [\Phi]$.
• $f = \{r \in \mathbb{Z}, r > 0\}$: $g^r \in H \neq [\Phi]$.
• $f = \{r \in \mathbb{Z}, r > 0\}$: $g^r \in H \neq [\Phi]$.
• $f = \{r \in \mathbb{Z}, r > 0\}$: $g^r \in H \neq [\Phi]$.
• $f = \{r \in \mathbb{Z}, r > 0\}$: $g^r \in H \neq [\Phi]$.
• $f = [f = a^m] = g^m] = g^m] = g^m$.
• $g = g^m$.

Corollary: The subgroups of \mathbb{Z} are $n\mathbb{Z}$ for n = 0, 1, 2, ... $H \subseteq \mathbb{Z}$. $H = \{o\} \quad OR$ Choose smallest positive inherer in H. Call that N. I + follows that $H = \langle n \rangle = n\mathbb{Z}$.