Orders of elements
Definition: Let G be a group and $g \in G$. Then the order of g is the number of elements in $\langle g\rangle$, assuming $\langle g\rangle$ is finite. If $\langle g\rangle$ is infinite we say that the order of g is $\infty . \quad|g|$-order of g in G.

$$
\begin{aligned}
& \text { Examples } \\
& G=\mathbb{Z}, \quad 2 \in \mathbb{Z} \quad\langle 2\rangle=2 \mathbb{Z}=\{-2,-4,-6, \ldots, 0,2,4, \ldots\} \\
& |\langle 2\rangle|=\infty \quad|2|=\infty \text { in } \mathbb{Z} \text {. } \\
& G=\mathbb{Z}_{12} \\
& 2 \in G \quad\langle 2\rangle=\{2,4,6,8,10,0\} \quad|2|=6 \text {. } \\
& 3 \in G \quad\langle 3\rangle=\{3,6,9,0\} \quad|3|=4 \\
& 5 \in G\langle 5\rangle=\{5,10,3,8,1,6,11,4 ; 9,2,7,0\} \\
& |5|=12 \\
& 5 \text { generates } \mathbb{Z}_{12} \\
& \langle 5\rangle \subseteq \mathbb{Z}_{12} \\
& |S|=12 \Leftrightarrow S \text { senates } \mathbb{T}_{12} \text {. } \\
& Q=\{ \pm 1, \pm i, \pm \jmath, \pm k\} \text {. } \\
& \langle i\rangle=\left\{i, i^{2}=-1, i^{3}=-i, i^{4}=1\right\} \quad|i|=4 \\
& { }_{2}\langle-1\rangle=\{-1,1\} \quad|-1|=2 \text {. }
\end{aligned}
$$

Key theorems about orders
Proposition: If $G \overline{\overline{\text { is }}\langle a\rangle}$ cyclic of order n generated by a - or, equivalently, if a has order n - then $\underline{a}^{k}=\underline{e}$ if and only if \underline{n} divides k.
i) $|a|$ in G is the smallest posh that $a^{n}=e$ (or moly if no such n exists).

Suppose, $a^{n} \neq e$ for all n. Men a, a^{2}, a^{3}, \ldots are all different.
Becavert $a^{i}=a^{-j}$ for $i \neq j$, then $a^{i-j}=C$ so we would have $n \in \mathbb{Z}$ with $a^{n}=e$, and $a^{-n}=e$ so we can arome $n>0$.
a has finite order means, for some $m>0$, we have $a^{m}=e$. Choose smallest n so that $n>0$ and $a^{n}=e$.
Look at $\left\{a^{0}, a^{1}, a^{2}, \ldots, a^{n-1}\right\} \leq\langle a\rangle$
Given a^{k} write $k=\operatorname{sit}$ with $0 \leqslant r<n$.

$$
a^{k}=a^{s n+r}=\left(a^{n}\right)^{s} a^{r}=e \cdot a^{r}
$$

so $a^{k} \in\left\{a^{0}, a^{1}, . . ., a^{n-1}\right\}$.
So ever power of a^{\prime} is in $\left\{a^{0}, \ldots, a^{n-1}\right\}$ so

$$
\left\{a^{0}, \ldots, a^{n-1}\right\}=\langle a\rangle
$$

Suppose. $\cdot a^{i}=a^{j}$
$\dot{a}^{j-i}=e \quad j^{-i}$ is smaller than n and $a^{j-i}=e$. $j-i$ must $=0$ so $j=i$,

$$
|a|=n
$$

if $a \mid k$, than $a^{k}=a^{t n}=\left(a^{n}\right)^{t}=e$.
$0 \leq r<n$

$$
\begin{aligned}
& a^{k}=e \quad k=s n+r \quad 0 \leq r<n \\
& a^{k}=a^{s n+r}=\left(a^{r}\right)^{s} a^{r}=e^{s} a^{r}=a^{r}=e \\
& \Rightarrow r=0 \quad k \text { is a multiple of } n .
\end{aligned}
$$

Proposition: Let G be a cyclic group of order n and let a be a generator of G. If $b=a^{k}$, then the order of b is n / d where $d=\operatorname{gcd}(k, n)$.
Given $b=a^{k}$, if $|a|=n$, what is order of $b=a^{k}$?.

$$
\begin{array}{ll}
G=\mathbb{T}_{12}, a=1 & b=3 \cdot 1 \\
\langle 3\rangle=4 & k=3 \quad n=12
\end{array} \quad \text { so } k=3
$$

$$
\begin{aligned}
& K=5 \\
& \langle 5\rangle=\langle 5 \cdot 1\rangle \quad \operatorname{gcd}(5,12)=1 \\
& \operatorname{orden}|5|=
\end{aligned}
$$

ordn $|5|=12 / 1=12$
Lemma: Suppose $n, k, r \in \mathbb{Z}$ and $n \mid k r$. If d / n and dk, Her el $\frac{n}{d} \left\lvert\, \frac{k}{d} r\right.$.

$$
\begin{array}{ll}
k r=y n & n=a d \quad k=b d \\
b d r=y a d & \frac{n}{d}=a \quad \frac{k}{d}=b \\
b d r=y a & \\
\frac{k}{d} r=y^{n} \frac{n}{d} &
\end{array}
$$

Lemme: If $n \mid k r$, $a r d d=\operatorname{gcd}(k, n)$, then

$$
\frac{n}{d} \text { divides } r
$$

Prod: By Euclid we have

$$
\begin{gathered}
6 \mid 4: 3 \\
d=\operatorname{gcd}(6,4)=2 \\
3 \mid 2 \cdot 3 \Rightarrow \\
3 \mid 3
\end{gathered}
$$

$$
\begin{aligned}
& x k+y n=d \\
& x \frac{k}{d}+y \frac{n}{d}=1
\end{aligned}
$$

$$
x \frac{k}{d} r+y \frac{n}{d} r=r \quad \text { By tenn } a, \frac{n}{d}\left(\frac{k}{d} r\right.
$$

So $\frac{n}{\lambda} / r$.

$$
b=a^{k} \quad|b|=\text { smallest } m \text { so that } \left.b^{m}=e . ~ . \quad a^{k m}=e \Leftrightarrow n|k m . \quad n| k m \Rightarrow \frac{n}{d} \right\rvert\, m .
$$

smallest choice is $m=n / d$. order $(b)=n / d$.
Corollary: A congruence class $[r]$ generates \mathbb{Z}_{n} if and only if $\operatorname{gcd}(r, n)=1$. More generally, if G is a cyclic group of order n generated by g, then g^{r} is a generator of G if and only if $\operatorname{gcd}(r, n)=1$.

$$
\begin{aligned}
& R_{12} \\
& \langle 1\rangle,\langle 5\rangle,\langle 7\rangle,\langle 1\rangle\rangle=\mathbb{Z}_{12} \\
& \begin{array}{ccccccccccccc}
k & 1 & 2 & 3 & 4 & 5 & 6 & 2 & 8 & 9 & 10 & 11 & 0 \\
\text { rode } & 12 & 6 & 4 & 3 & 12 & 2 & 12 & 3 & 4 & 6 & 12 & 1
\end{array} \\
& \text { - } \frac{(2}{\operatorname{ged}(12, k)} \quad\{8,16,0\}=\langle 8)
\end{aligned}
$$

