Basics
Prototypical examples of cyclic groups

1. The integers are a group with + as the operation. The integers can be made by starting with 0 and 1 and considering all of the sums

$$
1,1+1,1+1+1, \ldots
$$

together with

$$
-1,-1-1,-1-1-1, \ldots
$$

We say that 1 generates the integers.

$$
\left.\begin{array}{c}
1,1+1,1+1+1, \ldots \\
1,2,3, \ldots \\
-1,-2,-3,-4, \ldots \\
0
\end{array}\right\} \xrightarrow{ } \text { yields } R,\left\{\begin{array}{l}
-1,-1-1=-2,-1-1-1=-5, \ldots \\
1,1+1, \ldots \ldots \\
0 \\
-1 \text { generates } \\
\text { the integers }
\end{array}\right.
$$

2. Let $G=\mathbb{Z}_{n}$ for some $n>1$. G can be made by starting with 0 and 1 and then considering the sums $1,1+1, \ldots$. $n=12$

$$
\begin{array}{r}
11+1=12 \equiv 0 \\
\text { in } \mathbb{Z}_{12}
\end{array}
$$

R_{5}

1 gevereks \mathbb{T}_{5}

Fundamental definitions
Definition: Let G be a group and let $g \in G$ be an element. Define:

$$
\langle g\rangle=\left\{g^{n}: n \in \mathbb{Z}\right\} .
$$

$\langle g\rangle$ is called the cyclic subgroup of G generated by g.
Note: if we are writing the group operation using + , then

$$
\langle g\rangle=\{n g: n \in \mathbb{Z}\}
$$

$\mathbb{Z}_{5}:\langle 1\rangle$ is the at $\{1,2,3,4,0\}=\mathbb{R}_{5}$
$\mathbb{Z}:\langle 1\rangle$ is the st $\left\{\begin{array}{l}1,2,3,4, \ldots, \ldots,-1,-2,1, \ldots, 0,1=0\} \\ \langle 1\rangle=\mathbb{Z} .\end{array}\right.$
$\mathbb{Z}:\langle 2\rangle=\{2,4,6, \ldots,-2,-4,-6, \ldots, 0\} \notin \mathbb{Z}$.

Definition: If there is an element $g \in G$ so that $G=\langle g\rangle$, then we say that G is a cyclic group and that g generates G.
$\mathbb{Z}_{5}, \mathbb{Z}$ are cyckiogps \mathbb{Z}_{n} cyclic $=\langle 1\rangle$

Examples
The earlier examples \mathbb{Z} and \mathbb{Z}_{N} are cyclic groups.

If $n \in \mathbb{Z}$, then $\langle n\rangle$ is the cyclic subgroup of \mathbb{Z} consisting of multiples of n. $\langle 2\rangle \leq \mathbb{Z}$ consists of all even numbers

$$
\langle 5\rangle=\left\{S, 10,15, \ldots,-S_{1}-10,-1 S, \ldots, 0\right\}
$$

is a subgroup: $\langle 5\rangle$ 'is nonempty
If $a \in\langle 5\rangle$ and $b \in\langle 5\rangle$ then $a-b \in\langle 5\rangle$.

$$
\text { Pf: } a=5 n \quad b=5 m \quad a-b=\frac{5(n-m)}{n} \quad \in\langle 5\rangle
$$

If r is the rotation of the equilateral triangle, then $\langle r\rangle$ is the cyclic subgroup of symmetries of the triangle consisting of 3 rotations.

identity
r rotation toright
r^{2} rotation bo right 2 times

$$
\left\langle r_{1}\right\rangle
$$

$$
s_{1}, s_{c}, s_{3}=\left\{r_{1}, r_{1}^{2}, r_{1}^{3}=e\right\}
$$

$\langle r\rangle$ has 3 element
in G (which has 6 elements:)

$$
r^{-1}=r^{2}
$$

$r^{3}=e$

$$
r^{-2}=r
$$

More examples
If s is a reflection of the equilateral triangle then $\langle s\rangle$ is the two element cyclic subgroup consisting of 1 and $\langle s\rangle$.

$$
\langle s\rangle=\left\{s, s^{2}=e\right\}
$$

$U(7)$ is cyclic and generated by 3.

$$
\begin{array}{ll}
u(7)=\left\{a \in \mathbb{Z}_{7} \mid(a, 7)=1\right\} & \text { with } * . \\
u(7)=\{1,2,3,4,5,6\} \quad 6 \text { elements. } \\
3,3^{2}=\underline{2}, 3^{3}=3 \cdot 2=6, \quad 3^{4}=3 \cdot 3^{3}=3 \cdot 6=18=4 \\
3^{5}=3 \cdot 4=12=\underline{5}, \quad 3 \cdot 5=15=1 \bmod 7 \\
\langle 3\rangle=U(7) & U(7) \text { is cyclic. }
\end{array}
$$

Cyclic groups may have more than one genertor.

A look at \mathbb{Z}_{12}.

$$
\begin{aligned}
& \mathbb{Z}_{12} \\
& \langle 1\rangle=\{1,2,3,4,5,6,7,8,9,10,11,0\}=\mathbb{Z}_{12} \\
& \langle 2\rangle=\{2,4,6,8,10,0\} \neq \mathbb{Z}_{12} \\
& \langle 3\rangle=\{3,6,9,0\} \\
& \langle 4\rangle=\{4,8,0\} \\
& \langle 5\rangle=\{5,10,3,8,1.6,11,4 ; 9,2,7,0\}=\mathbb{Z}_{12} \\
& \langle 5\rangle=\mathbb{Z}_{12}
\end{aligned}
$$

Not every $g p$ is cyclic.
symmetries of Δ aren't cyclic.
rotations: $\langle r\rangle$ have 3 elements reflectors $\langle S\rangle$ has 2 elements idenkly $\langle e\rangle$ has I group.
Quaternions: $\quad\{ \pm 1, \pm i, \pm j, \pm k\}$

$$
\begin{aligned}
& \langle 1\rangle=\{i\} \\
& \langle-1\rangle=\{-1,1\} \\
& \langle i\rangle=\{i,-1,-i, 1\}
\end{aligned}
$$

$$
\begin{aligned}
& i^{2}=j^{2}=k^{2}=-1 \\
& i j=k \quad j i=-k \\
& j k=i, \quad k j=-i \\
& k i=j, \quad i k=-j
\end{aligned}
$$

$$
\langle j\rangle,\langle k\rangle \text { have Yelment }
$$

