Symmetries of an equilateral triangle

- A rigid motion of the Euclidean plane is a transformation that preserves the distances and angles between points. Rigid motions are combinations of rotations, reflections, and translations.
- The (Euclidean) symmetries of a region in the plane are the rigid motions that carry the region back onto itself.
- Thus a symmetry σ of a triangle T is a map $\sigma: T \rightarrow T$ that rearranges the edges and vertices according to a rigid motion. We can track the effect of the symmetry by seeing what happens to the labelled vertices.

Examples of symmetries of a triangle

- rotation

- reflection

A

Composition (or "multiplication") of symmetries

Definition: Suppose that α and β are symmetries of an equilateral triangle T. Then the "product" $\alpha \beta$ of α and β is the composition $\alpha \circ \beta: T \rightarrow T$, which is anothêr ${ }^{\text {T }}$ symmetry of the same triangle. Remember that $\alpha \circ \underline{\beta}$ means first β, then $\alpha!$.
We track the effect of symmetries by watching how the labels on the vertices are affected by them.

Examples

- Suppose that α is a clockwise rotation. What is $\alpha \alpha$?

- Suppose that α is a clockwise rotation and σ is reflection around

A

The set of symmetries

Proposition: There are six symmetries of an equilateral triangle.

Figure 1: Chapter 3, Figure 6

The multiplication table for symmetries of a triangle

$$
\begin{array}{|c|ccc|ccc}
\hline \circ & \text { id } & \rho_{1} \cdot & \rho_{2} & \mu_{1} & \mu_{2} & \mu_{3} \\
\hline \text { id } & \text { id } & \rho_{1} & \rho_{2} & \mu_{1} & \mu_{2} & \mu_{3} \\
\rho_{2} & \rho_{1} & \rho_{2} & \text { id } & \mu_{2} & \mu_{1} & \mu_{2} \\
\rho_{2} & \rho_{2} & \text { id } & \rho_{1} & \mu_{2} & \mu_{3} & \mu_{1} \\
\hline \mu_{1} & \mu_{1} & \mu_{2} & \mu_{3} & \frac{\text { id }}{2} & \rho_{2} \\
\mu_{2} & \mu_{2} & \mu_{3} & \mu_{1} & \rho_{2} & \frac{\mathrm{id}}{2} & \rho_{1} \\
\mu_{3} & \mu_{3} & \mu_{1} & \mu_{2} & \rho_{1} & \rho_{2} & \mathrm{id} \\
\hline
\end{array}
$$

$$
\rho_{2} \mu_{1}=\mu_{2}
$$

Figure 3.7 Symmetries of

Figure 2: Chapter 3, Figure 7

Checking some entries of the multiplication table

$$
\mu, \mu_{i}=i \text { dent dy }
$$

Rect rotate

$$
\mu_{1} \mu_{2}=\rho_{1}
$$

$$
\rho_{1} \mu_{1}=\mu_{3}
$$

$$
\mu_{1} p_{1}=\mu_{2}
$$

