Symmetries of an equilateral triangle

- A *rigid motion* of the Euclidean plane is a transformation that preserves the distances and angles between points. Rigid motions are combinations of rotations, reflections, and translations.
- The (Euclidean) symmetries of a region in the plane are the rigid motions that carry the region back onto itself.
- Thus a symmetry σ of a triangle T is a map $\sigma : T \to T$ that rearranges the edges and vertices according to a rigid motion. We can track the effect of the symmetry by seeing what happens to the labelled vertices.

Examples of symmetries of a triangle

• rotation

Composition (or "multiplication") of symmetries

Definition: Suppose that α and β are symmetries of an equilateral triangle T. Then the "product" $\alpha\beta$ of α and β is the composition $\alpha \circ \beta : T \to T$, which is another symmetry of the same triangle. Remember that $\alpha \circ \beta$ means <u>first β </u>, then α !.

We track the effect of symmetries by watching how the labels on the vertices are affected by them.

Examples

• Suppose that α is a clockwise rotation. What is $\alpha \alpha$? C

• Suppose that α is a clockwise rotation and σ is reflection around the lower left vertex. What is $\alpha\sigma$? What is $\sigma\alpha$?

The set of symmetries

Proposition: There are six symmetries of an equilateral triangle.

Figure 1: Chapter 3, Figure 6

The multiplication table for symmetries of a triangle

Figure 2: Chapter 3, Figure 7

Checking some entries of the multiplication table

