Subgroup theorems

The following theorems simplify the work of verifying that a subset of a group is in fact a subgroup.

Proposition: (First subgroup theorem) Let G be a group and H a subset of G. Then H is a subgroup if and only if:

- 1. If h_1 and h_2 are in H, then so is h_1h_2 . (this property is called closure)
- 2. The identity e of G belongs to H.
- 3. if $h \in H$, then $h^{-1} \in H$ where h^{-1} is the inverse of h in G.

Proof: Suppose first that H is a subgroup of G. Then the first condition holds by the definition of a subgroup.

For the second point, since H is a group, it must have an identity element; call that element \underline{u} . Since $\underline{u} \in \underline{H} \subset \underline{G}$, we have $\underline{eu} = \underline{u}$. On the other hand, we also have $\underline{uu} = u$. since $\underline{eu} = \underline{uu}$, we have $e\overline{uu} = \underline{u}$ so $\underline{e} = u$. Therefore $e \in H$.

For the third point, let $\underline{h} \in \underline{H}$. Then there is an element $\underline{x} \in \underline{H}$ so that $\underline{hx} = e$ since H is a group. But the equation hx = e also holds in G and by uniqueness of inverses has only one solution: $x = h^{-1}$. Therefore $h^{-1} \in H$. $x = h^{-2} \in h$ since e is the induction hx = e and $hy = h^{-1}$.

Proof: (continued) Now suppose all three properties hold for H. We know that the binary operation is associative, since it is the same as the operation for G. Points 2 and 3 tell us that H has an identity (e) and every element of H has an inverse h^{-1} . Therefore H is a group, and hence a subgroup of G.

Second subgroup theorem

This theorem simplifies the identification of subgroups even further.

Proposition: Let G be a group, and let H be a subset of G. Then <u>H is a subgroup of G if and only if it is non-empty</u> and, for all $g, h \in H$, we have $gh^{-1} \in H$. h^{-1} is the name of h in G.

Proof: If H is a subgroup, then it must have these properties. follows from the first subspice Hearer. So let's assume that H is a subset with these properties and prove that H is a subgroup.

First, H is non-empty, so choose an element $h \in H$.

Then $hh^{-1} = e \in H$. $\mathcal{C} \in \mathcal{H}$

Then if h is any element of H we have $eh^{-1} = h^{-1} \in H$. Given $e,h \rightarrow eh^{-1} \in H$ $eh^{-1} \in H$. This gives us properties 2 and 3 of the first subgroup theorem.

Finally, if g and h are in H, then $h^{-1} \in H$, so $g(h^{-})^{-1} = gh \in H$ so the first property also holds for H and it is therefore a subgroup.