Subgroups

Definition: Let G be a group and let <u>H be a subset of G</u>. Then H is a subgroup of G if:

- 1. whenever $h_1, h_2 \in \underline{H}$, we have $h_1h_2 \in H$. In other words, the binary operation on G, when restricted to H, gives a binary operation on H.
- 2. With this binary operation inherited from G, H is a group.

Examples of subgroups

Let \mathbb{R} be the additive group of real numbers. Then each of the following subsets of \mathbb{R} are subgroups:

IR group with + 1. $\mathbb{Z} \subset \mathbb{R}$. O is the addenty element 2. $\mathbb{Q} \subset \mathbb{R}$. 3. $\{0\} \subset \mathbb{R}$. xer, -xer (x+(-x))=04. RSR. 7 SR Som of integers of integer OEZ if XEZ, -XEZalso Ziayohgrapolk () ER -2 32 sun of frachens is a frachon; OEQ; Q's a subgrapp a EQ, - a EQ b R. ZEQ 0+0=0 0 is its own inverse. Soy SR. Every group G 2 always has {e} = G as a subgroup. [G=G is a subgroup.

Examples of subgroups continued

Let \mathbb{R}^* be the set of *non-zero* real numbers with group operation given by multiplication. Then the following are subgroups:

1.
$$\{-1, 1\} \subset \mathbb{R}^*$$

2. the non-zero rational numbers with multiplication $\mathbb{Q}^* \subset \mathbb{R}^*$.

Note: The nonzero integers \mathbb{Z}^* are *not* a subgroup.

$$\mathbb{Z} - \{0\} = \mathbb{Z}^{*}$$
.
 $\mathbb{Z}^{*} \xrightarrow{NOT} a \xrightarrow{POPP}$. $\Rightarrow 2^{*} = \frac{1}{2} \notin \mathbb{Z}^{*}$.

Examples of subgroups continued

Remember that $\underline{\operatorname{GL}}_2(\mathbb{R})$ is the group of invertible 2x2 matrices with real entries.

Proposition: The subset $SL_2(\mathbb{R})$ consisting of invertible $2x^2$ matrices with determinant 1 is a subgroup.

Examples of subgroups continued

Let G be the group of symmetries of the equilateral triangle.

Proposition: Let $H \subset G$ be the subset consisting of the rotations of the triangle. Then H is a subgroup of G.

