Subgroups

Definition: Let G be a group and let H be a subset of G. Then
H is a subgroup of G if:

1. whenever hy, hy € H, we have hihy € H. In other words, the
binary operation on GG, when restricted to H, gives a binary
operation on H.

2. With this binary operation inherited from G, H is a group.



Examples of subgroups

Let R be the additive group of real numbers. Then each of the
following subsets of R are subgroups:
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Examples of subgroups continued

Let R* be the set of non-zero real numbers with group operation
given by multiplication. Then the following are subgroups:

1. {-1,1} CR*
2. the non-zero rational numbers with multiplication Q* C R*.
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Note: The nonzero integers Z* are not a subgroup.
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Examples of subgroups continued

Remember that GLy(R) is the group of invertible 222 matrices with

real entries.

Proposition: The subset SLy(R) consisting of invertible 222 ma-
trices with determinant 1 is a subgroup.
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Examples of subgroups continued
Let G be the group of symmetries of the equilateral triangle.

Proposition: Let H C G be the subset consisting of the rotations

of the triangle. Then H is a subgroup of G. C
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