Basic Theorems about Groups

There is only one identity element

Can a group G have more than one identity element? The axioms say that there is an element e so that $e g=g e=g$ for all $g \in G$. Could there be two elements e_{1} and e_{2}, both of which act like identity elements?

Proposition: Let G be a group. Then G has exactly one identity element.

Our strategy: we will suppose there are two elements that act like the identity. We will prove they are equal.

Proof: Step by step:

- Suppose that e_{1} and e_{2} both have the property that $e_{i} g=$ $g e_{i}=g$ for all $g \in G$ and $i=1,2 . \quad e_{, ~} g=g e_{1}=g p_{\sim}$ all g
- Since $g e_{1}=g$ for all g, let $\delta=e_{2} \quad$ have $e_{2} e_{1}=e_{2} . \quad e_{2} g=g e_{2}=g$ lu all g
- Since $\underline{e_{2} g}=g$ for all \underline{g}, we have $e_{2} e_{1}=e_{1}$.
- Therefore $e_{1}=e_{2}$.

Each element has exactly one inverse.

The axioms say that, for every $g \in G$, there is an $h \in G$ so that $\underline{h g}=g h=\underline{e}$ where e is the identity element. Could there be two elements h_{1} and h_{2} so that $h_{1} g=g h_{1}=h_{2} g=g h_{2}=e$?
Proposition: Let G be a group and $g \in G$ be an element. Then there is exactly one inverse element \underline{h} such that $\underline{h g}=g \underline{h}=\underline{e} . \quad \underline{g} G$ Our strategy, as before, will be to assume there are two elements that act like this, and prove they are equal.

Proof: Step by step:

- Suppose that $\underline{g} \in G$ and \underline{h}_{1} and \underline{h}_{2} have the properties $\underline{h_{1} g}=$ $g h_{1}=e$ and $h_{2} g=g \underline{h_{2}}=e$.
- Look at $\frac{\left(h_{1} g\right) h_{2}=e h_{2}=h_{2}}{\uparrow}{ }^{\boldsymbol{h}}$.
h_{1} and $\left(h_{1} g\right) h_{2}=h_{1}\left(g h_{2}\right)=\underline{h_{1} e=}$
- By the associativity property, $h_{2}=\left(h_{1} g\right) h_{2}=h_{1}\left(g h_{2}\right)=h_{1}$.

$$
g \quad g^{-2}=\underset{\text { unitive }}{\text { mince }} \text { to } g
$$

Equations in groups

Suppose that h and g are elements of a group G. We can ask if there is an x such that $h x=g$ - in other words, does this equation have a solution?

Tole $h x=g$ for x.
Proposition: Let g and h be elements of a group G. The equation $h x=g$ always has a (unique) solution. So does $x h=g$.
Proof: Multiply both sides of the equation $h x=g$ on the left by h^{-1} : $h x=g$

$$
h^{-1}(h x)=h^{-1} g .
$$

Since $h^{-1}(h x)=\underline{\left(h^{-1} h\right) x}=e x=x$, we have the solution $\underline{x=h^{-1} g \text {. }}$ For the second equation, multiply by h^{-1} on the right:

$$
(x h) h^{-1}=x\left(h h^{-1}\right)=x e=x=g h^{-1}
$$

Exponents
If g is an element of a group G, we let $g^{n}=\overbrace{g g g}^{n} \cdots g$ be the result of multiplying g by itself n times. This makes sense because of the associative law.

We let $g^{-n}=\left(g^{-1}\right)^{n}$.

$$
g^{n}=g \cdot g \cdot g
$$

Proposition: The following rules of exponents hold:

- $g^{n} g^{m}=g^{n+m}$ for all $n, m \in \mathbb{Z}$.

$$
\begin{aligned}
g^{-3} \cdot g^{5} & =-0^{-1} g^{-1} g^{-1} g 9 g 9 \\
& =\underbrace{g^{-1} \underbrace{-1} \notin g g 99}=g^{2}
\end{aligned}
$$

- $\underline{(g h)^{-1}=h^{-1} g^{-1}}$
- If G is abelian then $(g h)^{n}=g^{n} h^{n}$. If G is not abelian, this is not true in general.

$$
\begin{aligned}
& (g h)^{-1} g^{h}=e \\
& h^{-1} g_{-1}^{-1} \cdot g h=h^{-1}\left(g^{-1} g\right) h=h^{-1} e h=h^{-1} h=e \\
& \text { is the inverse of } g h .
\end{aligned}
$$ $h^{-1} g^{-1}$ is the inverse of $g h$.

$$
\begin{aligned}
& \left(g^{h}\right)^{-1}=h^{-1} g^{-1} . \\
& (g h)^{n}=\int^{n} h^{n} \text { If of } G \text { is abelian. } \\
& (g h)^{n}=g_{n \text { times }}^{\text {high... }^{2} g^{h}}=g^{n} h^{n} \text {. using } g h=h g \text {. }
\end{aligned}
$$

