- ansociative - identity element except - every ett has an inverse

Basic Theorems about Groups

<u>There is only one identity element</u>

Can a group G have more than one identity element? The axioms say that there is an element e so that eg = ge = g for all $g \in G$. Could there be two elements e_1 and e_2 , both of which act like identity elements?

Proposition: Let G be a group. Then G has exactly one identity element.

Our strategy: we will suppose there are two elements that act like the identity. We will prove they are equal.

Proof: Step by step:

- Suppose that e_1 and e_2 both have the property that $e_ig = ge_i = g$ for all $g \in G$ and i = 1, 2. Since $ge_1 = g$ for all g, we have $e_2e_1 = e_2$. Since $ge_1 = g$ for all g, we have $e_2e_1 = e_2$.
- Since $\underline{e_2g} = \underline{g}$ for all \underline{g} , we have $\underline{e_2e_1} = \underline{e_1}$.

• Therefore
$$e_1 = e_2$$
.

Each element has exactly one inverse.

The axioms say that, for every $g \in G$, there is an $h \in G$ so that $\underline{hg} = \underline{gh} = \underline{e}$ where e is the identity element. Could there be two elements h_1 and h_2 so that $h_1g = gh_1 = h_2g = gh_2 = e$?

Proposition: Let G be a group and $g \in G$ be an element. Then there is exactly one inverse element <u>h</u> such that hg = gh = e. $\Im^{e G}$

Our strategy, as before, will be to assume there are two elements that act like this, and prove they are equal.

Proof: Step by step:

- Suppose that $\underline{g} \in G$ and \underline{h}_1 and \underline{h}_2 have the properties $\underline{h}_1\underline{g} = \underline{g}\underline{h}_1 = \underline{e}$ and $\underline{h}_2\underline{g} = \underline{g}\underline{h}_2 = \underline{e}$.
- Look at $(\underline{h_1g})\underline{h_2} = \underline{e}\underline{h_2} = \underline{h_2}$ and $(\underline{h_1g})\underline{h_2} = \underline{h_1}(\underline{g}\underline{h_2}) = \underline{h_1e} = \underline{h_1e}$
- By the associativity property, $\underline{h_2 = (h_1g)h_2 = h_1(gh_2) = h_1}$.

Equations in groups

Suppose that h and g are elements of a group G. We can ask if there is an x such that hx = g - in other words, does this equation have a solution? $\uparrow sde h = g - h$

Proposition: Let g and h be elements of a group G. The equation hx = g always has a (unique) solution. So does xh = g.

Proof: Multiply both sides of the equation hx = g on the left by h^{-1} : hx = g $h^{-1}(hx) = h^{-1}g$.

Since $h^{-1}(hx) = (\underline{h^{-1}h})x = ex = x$, we have the solution $\underline{x = h^{-1}g}$. For the second equation, multiply by h^{-1} on the right:

$$(xh)h^{-1} = x(hh^{-1}) = xe = x = \underline{gh}^{-1}$$

Exponents

If g is an element of a group G, we let $g^n = \overbrace{ggg}^n \\ \underbrace{}^n \\ \cdots \\ g$ be the result of multiplying g by itself n times. This makes sense because of the associative law. $q^{n} = \overline{j \cdot j \cdot \cdots \cdot j}$

We let
$$g^{-n} = (g^{-1})^n$$
.
 $\int_{a}^{b} - \int_{a}^{b} \int_{a}^{b} = (g^{-1})^n$.

Proposition: The following rules of exponents hold:

- ents nord. $\overline{g}^3 \cdot g^5 = \overline{5}\overline{9}\overline{9}\overline{9}\overline{9}\overline{9}\overline{9} = \overline{9}\overline{5}\overline{5}\overline{9}\overline{9}\overline{9}\overline{9}\overline{9} = \overline{9}\overline{5}\overline{5}\overline{5}\overline{9}\overline{9}\overline{9}\overline{9}\overline{9} = \overline{9}\overline{5}\overline{5}\overline{5}\overline{9}\overline{9}\overline{9}\overline{9}\overline{9}\overline{9} = \overline{9}\overline{5}\overline{5}\overline{5}\overline{9}\overline{9}\overline{9}\overline{9}\overline{9}\overline{9}\overline{9}$ • $g^n g^m = g^{n+m}$ for all $n, m \in \mathbb{Z}$. • $(gh)^{-1} = h^{-1}g^{-1}$
- If G is abelian then $(gh)^n = g^n h^n$. If G is not abelian, this is not true in general.

$$(gh)^{2}gh = e$$

$$h^{2}g^{-1}gh = h^{-1}(g^{2}g)h = h^{2}eh = h^{-1}h = e$$

$$h^{2}g^{-1}gh = h^{2}g^{-1}$$

$$(gh)^{2} = h^{2}g^{-1}$$

$$(gh)^{2} = ghghgh \dots gh = g^{2}h^{2}$$

$$(gh)^{2} = ghghgh \dots gh = g^{2}h^{2}$$

$$(gh)^{2} = ghghgh \dots gh = g^{2}h^{2}$$

$$(gh)^{2} = ghghgh \dots gh = g^{2}h^{2}$$