Definition of a Group

A group G is a set together with a binary operation that satisfies certain properties. The book calls the **binary operation** a **law of** composition.

Binary operations

Formally speaking, a **binary operation** on \underline{G} is a function

$$m: \underline{G} \times \underline{G} \to \underline{G}$$
$$m(g_{1}, g_{2}) = g_{3}$$

But we often write binary operations with operators like + or \circ . **• plus** : $\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ defined by **plus**(x, u) = x + u ***** $\mathcal{J} : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$.

Χος

• <u>**plus**</u> : $\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ defined by <u>**plus**(x, y)</u> = <u>x + y</u>.

Or sometimes we don't write anything and we just put symbols next to each other, as for multiplication:

• times : $\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ defined by $\underline{\text{times}(x, y)} = xy$.

The key thing is that a binary operation on a set G takes two elements of G and gives you back a new one.

Axioms

Definition: If G is a set with a <u>binary operation</u> (which we will write here as if it were multiplication), then G is a group provided that:

- The binary operation is associative, meaning that, for any $x, y, z \in G$, we have (xy)z = x(yz). \bigstar
- \underline{G} has an identity element, meaning that there exists an element $e \in G$ so that ex = xe = x for all $x \in G$.
- Every element of G has an inverse, meaning that, for all $x \in G$, there exists $y \in G$ such that xy = yx = e.

$$(m(x,y)_{3}) = m(x,m(y,z))$$

$$xy = yx = e$$

Definition: If, in addition to these axioms, the binary operation also satisfies the condition that, for all $x, y \in G$, xy = yx, then G is said to be an **abelian** group.

ottenuis nonabelian

The set \mathbb{Z} of integers with addition is a group.

- $a,b,C\in\mathbb{Z}$ (a+b)+c = a+(b+c)
- Here exists an ee Z so that x+e=e+x=x for all x e Z. e=0. 0+x=x+o=x for all x e Z.
- · If a e Z, there is b e Z, so that atb= e = 0 = b + a. $b = -a \in \mathbb{Z}$. a + (-a) = (-a) + a = 0 for any $a \in \mathbb{Z}$.

So (Z,+) is a group. . arts = bra for all a, b = Z, Z is an abelian group. The set \mathbb{Q} of rational numbers with addition is a group $\cdot a d d h \infty is a source two$ a group

The set \mathbb{R} of real numbers with addition is a group. R are too. The integers mod N with addition are a group.

Nany integer >0.
. [a] + ([b] + [c])
$$\stackrel{:}{=} ([c] + [b]) + [c]$$

where [a], [b], [c] are all in $\mathbb{Z}/N\mathbb{Z}_{-}$
[c] + ([b] + [c]) = [a] + [(b+c)] = [a+(b+c)]
= [(a+b) + c] = [(a+b)] + [c]
= ([c+b) + [c]) = ([a+b)] + [c]

•
$$[o]$$
 is the identry,
 $[a]+[o] = [aro] = [a] = [o]+[a]$,
• $[a]+[-a] = [o] = [-a]+[a]$

$$\begin{split} \mathcal{N} = \mathcal{N} \\ [5] + [6] = [\mathcal{N}] = [\mathcal{O}] \\ [c] = [-5] \quad \text{because} \quad 6 \equiv -5 \mod \mathcal{N}. \\ [a] + [b] = [b] + [a] = [a + b] \\ \hline \mathbb{Z}/\mathcal{N} \quad b \text{ an abelian } \mathcal{N} \cup \mathcal{D}. \\ \text{with } \mathcal{N} \quad \text{elements.} \end{split}$$

The symmetries of an equilateral triangle are a group.

group.
A symetry is a function
$$f:T \rightarrow T$$
 by any motion
id
id $f:T \rightarrow T$ by any motion
id $f:T \rightarrow T$ by any motion
identity: Left notation by 120°; Right notation by 120°;
3 reflections. Mi, M2, M3
Operation is composition
 $f_2 p_1$ means 'yinst p_1 , then p_2 '
can position of functions.
) composition is associative
 $a_3b_3c:T \rightarrow T$
 $(a_{0}b) \cdot c_{1}^{-2} = a(b \cdot c_{1})$
 $f x \in T_{1}^{-2}$ then $((a \cdot b) \cdot c_{1}(x))$
 $= (a \cdot b) c(x) = a(b(c(x)))$
 $(a \cdot (b \cdot c_{1})(x)) = a(b(c(x)))$
 $\cdot identity: e:T \rightarrow T$
 $f a is any sympthy
 $a \cdot e:T \rightarrow T = a:T \rightarrow T$
 $e \cdot a:T \rightarrow T = a:T \rightarrow T$
 $f = a:T \rightarrow T = a:T \rightarrow T$$