(1) \mathbb{Z} with multiplication is NOT a group.

- binary operation (mult-plicatim)

$$
a(b c)=(a b) c
$$

has an identely element $1 \quad 1 \cdot a=a=a \cdot 1$.

- $O \in \mathbb{Z}$ does not have an inverse.
$0 \cdot x=1$ has no solution.
$2 \in \mathbb{Z}$ does not have an inverse. ($\left(\frac{1}{2} \notin \mathbb{Z}\right)$
(2)

$$
\begin{aligned}
& \left.\left.G L_{2}(\mathbb{R})=\left\{\begin{array}{ll}
a & b \\
a & d
\end{array}\right) \right\rvert\, \begin{array}{c}
a, b, c, d \in \mathbb{R} \\
a^{2}-b-b \neq 0
\end{array}\right\} \text { is a pout. } \\
& I I=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \left\lvert\, \begin{array}{c}
a, b_{1}, \partial \in \mathbb{R} \\
d a-b c \neq 0
\end{array}\right.\right\} \text { is NOT a group. } \\
& \left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right) \in E\left[\text { but }\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
x & y \\
z & v
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right. \\
& 2 x=1 y=z=0 \\
& \left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1
\end{array}\right) \in G L_{2}(\mathbb{R}) \\
& \begin{aligned}
& w=1 \\
\text { has no } \mathbb{Z} & \text { solutes. }
\end{aligned}
\end{aligned}
$$ but not in H.

$$
\begin{aligned}
& \text { (3) cons product is not associative. } \\
& \begin{array}{l}
\vec{v}=(a \hat{\imath}+b \hat{\jmath}+c \hat{k}) \\
\vec{\omega}=(r \hat{\imath}+s \hat{\jmath}+t \hat{k})
\end{array} \quad \vec{v} \times \vec{w}=\left|\begin{array}{ccc}
i & j & k \\
a & b & c \\
r & s & t
\end{array}\right| \\
& \vec{v} \times \vec{w}=-\vec{w} \times \vec{v} \\
& =(b t-c s) \hat{\imath}+(r c-a t) \hat{\jmath} \\
& 4 \text { (as-br) } \hat{k} \text {. } \\
& i x j=k \quad j \times k=i \quad k x i=1 \\
& i x i=i x j=k x k=0 \text {. } \\
& \left((i+j) \times i \cdot \times k^{c}=(-k) \times k=0\right. \\
& (i+j) \times(i \times k)=(i+j) \times(-j)=-k
\end{aligned}
$$

