[1]:

[5]:

[9]:

Python-Basics

January 18, 2021

0.0.1 Beginning
Following the tradition, we start with a test message.

print("Hello, World!")

Hello, World!

Here print () is a built-in function. “Hello, World!” is a string. (Explained later)

0.0.2 Variables
A variable is a named location used to store data in the memory.

a=2

b=0.3

gl="Hello"

g2="World!"

print(a, b, atb, gl, g2, gl+g2)

2 0.3 2.3 Hello World! HelloWorld!

Every object in Python has a type.

print(type(a), type(b), type(a+b), type(gl))
<class 'int'> <class 'float'> <class 'float'> <class 'str'>

0.0.3 Operators

Operators are used to perform operations on variables and values.

o Arithmetic operators: + (addition), - (subtraction), * (multiplication), / (division), ** (ex-

ponent), // (floor division), % (remainder)

o Comparison operators: == (equal to), != (not equal to), < (less than), <= (less than or equal

to), > (greater than), >= (greater than or equal to)
— They return either True or False.

o Assignment operators: = (assign a value), += (add and assign), -= (subtract and assign), *

(multiply and assign), /= (division and assign)
— similarly, //=%=**=

[11]: |a=150; b=27
print(a+b, a-b, a*b, a/b)

177 123 4050 5.555555555555555

[14] : |a=17; b=5
print(a**b, a//b, alkb)

1419857 3 2

[99]: g="good "; d="day "
print(g+d, g*3, d*x2)

good day good good good day day

[21]: x=5
x+=5; print(x)
x-=3; print(x)
x*=6; print(x)
x/=3; print(x)

10

7

42
14.0

[24]: |y=10
y//=3; print(y)
y**=2; print(y)
yh=4; print(y)

3

1

[37]: g='good '
g+='day '; print(g)
g*=3; print(g)

good day
good day good day good day

[44] : print(5==7, 4<7, 4<5<6, 3+2==5, 'good'=='bad')
False True True True False

0.0.4 Data types

o List(1list): [iteml, item2, ... |

[2]:

[3]:
[3]:

[4]:

[5]:

[7]:

[23]:

[54] :

[54] :

[28]:

o Tuple(tuple): (iteml, item2, ...)
o Dictionary(dict): { keyl:valuel, key2:value2, ... }

1li = [1, 3, 5, 7, 9, 'dog', 'cat']l # list
tu (2, 4, 6, 8, 10) # tupule
di {'name':'Alice', 'age':21,\
'favorite_fruit':['apple', 'banana','cherry'l} # dictionary

\ is used to seprate lines.

1i*2

(1, 3, 5, 7, 9, 'dog', 'cat', 1, 3, 5, 7, 9, 'dog', 'cat'l
1i += [11, 'hamster']; print(1li)

(1, 3, 5, 7, 9, 'dog', 'cat', 11, 'hamster']

tu *=3; print(tu)

(2, 4, 6, 8, 10, 2, 4, 6, 8, 10, 2, 4, 6, 8, 10)

di.update({'name':'Betty'}); print(di)

{'name': 'Betty', 'age': 21, 'favorite_fruit': ['apple', 'banana', 'cherry']}

Here .update() is a method. (Explained later)

0.0.5 Accessing data

o Lists and tuples are indexed by integers, starting at 0 for the first item.
— To access a range of items, one can use slicing.
* list[start:stop] items start through stop-1
x list[start:] items start through the rest of the list
* list[:stop] items from the beginning through stop-1
x list[:] a copy of the whole list
— Negative indexing starts at the back of a sequence.
o A string can be accessed in the same way.
e Dictionaries are indexed by their keys.

1li_odd=[1,3,5,7,9,11,13,15]
1i_odd[0], 1i_odd[3], 1i_odd[-1]
(1, 7, 15)

print(1i_oddl[:])
print(1i_odd[2:5])

print(1li_odd[3:])
print(1li_odd[:2])

[53]:

[53]:

[8]:

[9]1:

[9]:

[11]:

[11]:

[45] :

[52]:

[52]:

[23]:

[23]:

print(li_odd[-2:])
print(li_odd[:-1])

(1, 3, 5, 7, 9, 11, 13, 15]
(5, 7, 9]

[7, 9, 11, 13, 15]

[1, 3]

[13, 15]

(1, 3, 5, 7, 9, 11, 13]

hi='How are you?'
hi[0],hi[4],hi[-1], hi[1:-1]

('H', 'a', '?', 'ow are you')

di = {'name':'Alice', 'age':21,\
'favorite_fruit':['apple', 'banana','cherry']}

di['name']
'Alice'
di['favorite fruit'][2]

'cherry'

0.0.6 Built-in functions
A function performs an action and/or return a value.

Examples of built-in functions: - print(), type() - functions for lists or tuples: len() (length),
sum(), min(), max() - functions for numbers: abs() (absolute value), round() - type conversion:
int (), str(), float(), list() - input () (taking an input string from the user)

You can define your own functions. (Explained later)

1i_odd=[1,3,5,7,9,11,13,15]
len(li_odd), sum(li_odd), max(li_odd), abs(-7)
(8, 64, 15, 7)

a=3.14159; b=-a
round(a), b, abs(b), round(b)

(3, -3.14159, 3.14159, -3)

[24]: a=3; b=float(a); c=str(a)
type(a), type(b), type (c)

[24]: (int, float, str)

[27] : name=input("Enter your name: ")
print("Hi, "+name+"!")

Enter your name: Tom
Hi, Tom!

0.0.7 Methods

An object has its methods which are functions available for the object. These are accessed by the
format object.method().

0.0.8 Some methods on string objects

.capitalize(), .upper() (upper case), .lower() (lower case), .count(substring),
.replace(old, new)

[46] : sentence = 'aMyloidoSis Is a disEase.'
[47]: sentence.capitalize(), sentence.upper(), sentence.lower ()
[47]: ('Amyloidosis is a disease.',
'AMYLOIDOSIS IS A DISEASE.',
'amyloidosis is a disease.')
[48] : sentence.count('s'), sentence.count('is')
[48]: (4, 2)

[61]: sentence.replace('is', '!$')

[51]: 'aMyloidoS!$ Is a d!$Ease.’

0.0.9 Some methods on list objects
.append(item), .extend([iteml, item2, ...]), .remove(item)

[66]: 1i=[1,3,5,7,9]
li.append(17)
1i

[(6e]: [1, 3, 5, 7, 9, 17]

[67]:

[67]:

[68]:

[68]:

[12]:

[14]:

[15]:

[15]:

[16]:

[16]:

[17]:

[17]:

[115]:

1li.extend([19,23])
1i

(1, 3, 5, 7, 9, 17, 19, 23]

1li.remove(5)
1i

(1, 3, 7, 9, 17, 19, 23]

0.0.10 Some methods on dict objects
.update(dictl) (to update with dictl), .keys() (list of keys), .values() (list of values)
di = {'name':'Alice', 'age':21,\

'favorite_fruit':['apple', 'banana','cherry']}
di.update({'name':'Betty', 'major': 'math' })

di

{'name': 'Betty',
'age': 21,
'favorite_fruit': ['apple', 'banana', 'cherry'l],
'major': 'math'}

di.keys(Q
dict_keys(['name', 'age', 'favorite_fruit', 'major'l]l)
di.values()

dict_values(['Betty', 21, ['apple', 'banana', 'cherry'], 'math'])

0.0.11 if statements and while loops

An if statement tests a condition and performs some actions if the condition evaluates to True.
If the condition evaluates to False, alternative actions can be taken by elif and/or else.

Warning: Indentation is extremely important!
A while loop will keep performing some actions as long as its condition evaluates to True.

num = int(input("Enter an integer greater than 10: "))

if num > 10:
print ("Great job!")

Enter an integer greater than 10: 7

Here int () and input () are built-in functions.

[113]: num = int(input("Enter an integer: "))

if num)2 ==

print ("Even number")
else:

print ("0dd number")

Enter an integer: -17
0dd number

[112]: num = int(input("Enter an integer: "))

if num > O:

print ("Positive number")
elif num ==

print("Zero")
else:

print ("Negative number")

Enter an integer: -23
Negative number

[120]: num = int(input("Enter a positive integer: "))

sum 0

while i <= num:
sum = sum + i
i=1i+1

print ("The sum from 1 to %d is " % num + str(sum) + ".")

Enter a positive integer: 99

The sum from 1 to 99 is 4950.

%d is used to refer to a variable of type int which follows after %. Similarly, one can use %s and
Pof.

0.0.12 for loops

Actions can be iterated over a collection of items using a for loop. The strings, lists, tuples and
dictionaries are all iterable containers. It is also common to use range(). - A for loop will go
through the specified container, one item at a time. - break can be used to terminate a loop.

(121]: 1i_odd = [1,3,5,7,9,11,13,15]

sum = O

for n in 1li_odd:
sum += n

print("The sum is "+str(sum)+".")

The sum is 64.

[129]: print(list(range(10)))
print(list(range(3,10)))
print(list(range(1,10,2)))
print (list(range(10,2)))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
(3, 4, 5, 6, 7, 8, 9]

[1, 3, 5, 7, 9]

(]

Here list() converts the type from range to list.

[130]: num = int(input("Enter a positive integer: "))
sum =0
for i in range(l,num+1):
sum += i

print("The sum from 1 to %d is " % num + str(sum) + ".")

Enter a positive integer: 21
The sum from 1 to 21 is 231.

[66]: for char in "How are you?":
print (char)

o

o®

N e o0

[61]: for char in "How are you?":
if char == "y":
break
print(char, end="") # This prints on the same line.

How are

0.0.13 List comprehensions
There is a simple way to generate a list with a single line of code using list comprehensions.

[140]: [a*x*2 for a in range (1,10)]

[140]: [1, 4, 9, 16, 25, 36, 49, 64, 81]

[145]: [a*x*2 for a in range (1,20) if a %3 ==0]

[145]: [9, 36, 81, 144, 225, 324]

[146]: [a*x*2 if a 73 ==0 else a for a in range (1,20)]

[146]: [1, 2, 9, 4, 5, 36, 7, 8, 81, 10, 11, 144, 13, 14, 225, 16, 17, 324, 19]

0.0.14 Copying a list
This brings about a common mistake.

[150]: 1i_a=[1,2,3]
1i_b=1i_a # The location of memory is copied.
1li_b.append(4)
li_a, 1i_b

[1501: ([1, 2, 3, 41, [1, 2, 3, 41)

[151]: 1i_a=[1,2,3]
1i_b=1i_al:] # Only the values are copied.
li_b.append(4)
1i_a, 1ib

[151]: (1, 2, 31, [1, 2, 3, 41)

[571: 1li_a=[1,2,3]
1li_b=1i_a.copy() # Only the values are copied.
1i_b.append(4)
li_a, 1li_b

(s71: ([1, 2, 3], [1, 2, 3, 4]

0.0.15 How to define a function

A function is a group of statements that perform a specific task. You use def to create a function.
A result can be returned from a function using a return statement.

[62]: def print_name(name):
print("Hi! I am "+name+".")

print_name('John')
print_name('Cynthia')

Hi! I am John.

Hi! T am Cynthia.

[2]: def divisors(num):

dv=[]
for i in range(l,num+1):
if num’%i ==0:

dv.append (i)
return dv

divisors(6), divisors(23), divisors(1234), divisors(2021)
[2]: ([1, 2, 3, 6], [1, 231, [1, 2, 617, 1234], [1, 43, 47, 2021])

[6]: def is_prime(num):
dv=divisors (num)
if len(dv) == 2:
return True
else:
return False

is_prime(5), is_prime(12), is_prime(2311)

[5]: (True, False, True)

0.0.16 Recursive functions

A function that calls itself is a recursive function. Every recursive function must have a condition
that stops the recursion in order to avoid an infinite loop.

[3]: def factorial (num):
if num ==
return 1
else:
return num*factorial (num-1)

factorial(5), factorial(12)

10

[3]: (120, 479001600)
[7]: def fibonacci(num):
if num ==
return O
elif num ==
return 1
else:
return fibonacci(num-1)+fibonacci(num-2)

[fibonacci(i) for i in range(15)]

(71: fo, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377]

0.0.17 Modules
A module is a file containing Python statements and definitions. One can import a module.

[8]: |pi

NameError Traceback (most recent call last)
<ipython-input-8-£84ab820532c> in
> 1 pi

NameError: name 'pi' is not defined

[12]: import math
math.pi, math.e
[12]: (3.141592653589793, 2.718281828459045)
[13]: import math as m
m.pi, m.e
[13]: (3.141592653589793, 2.718281828459045)

One can import specific names from a module. In such a case, a dot after the moudle name is not
needed.

[156]: from math import pi,e
pi, e

[15]: (3.141592653589793, 2.718281828459045)

11

We can import all names from a module.

[69]: |from math import *
[60]: gamma(1l/2) == sqrt(pi)
[60]: True

It is true that I' (1) = /7 where I'(z) = Jo~ t" el dt is the gamma function.

12

	Beginning
	Variables
	Operators
	Data types
	Accessing data
	Built-in functions
	Methods
	Some methods on string objects
	Some methods on list objects
	Some methods on dict objects
	if statements and while loops
	for loops
	List comprehensions
	Copying a list
	How to define a function
	Recursive functions
	Modules

