
1 The Naive Bayes classification method
1.1 Introduction
In our discussion of Bayes Theorem, we looked at a situation in which we had a
population consisting of people infected with COVID-19 and people not infected,
and we had a test that we could apply to determine which class an individual
belonged to. Because our test was not 100 percent reliable, a positive test
result didn’t guarantee that a person was infected, and we used Bayes Theorem
to evaluate how to interpret the positive test result. More specifically, our
information about the test performance gave us the the conditional probabilities
of positive and negative test results given infection status – so for example we
were given P (+|infected), the chance of getting a positive test assuming the
person is infected – and we used Bayes Theorem to determine P (infected|+),
the chance that a person was infected given a positive test result.

The Naive Bayes classification method is a generalization of this idea. We have
data that belongs to one of two classes, and based on the results of a series of
tests, we wish to decide which class a particular data point belongs to. For one
example, we are given a collection of product reviews from a website and we
wish to classify those reviews as either “positive” or “negative.” This type of
problem is called “sentiment analysis.” For another, related example, we have a
collection of emails or text messages and we wish to label those that are likely
“spam” emails. In both of these examples, the “test” that we will apply is to look
for the appearance or absence of certain key words that make the text more or
less likely to belong to a certain class. For example, we might find that a movie
review that contains the word “great” is more likely to be positive than negative,
while a review that contains the word “boring” is more likely to be negative.

The reason for the word “naive” in the name of this method is that we will
derive our probabilities from empirical data, rather than from any deeper theory.
For example, to find the probability that a negative movie review contains the
word “boring,” we will look at a bunch of reviews that our experts have said
are negative, and compute the proportion of those that contain the word boring.
Indeed, to develop our family of tests, we will rely on a training set of already
classified data from which we can determine estimates of probabilities that we
need.

1.2 An example dataset
To illustrate the Naive Bayes algorithm, we will work with the “Sentiment
Labelled Sentences Data Set” ([1]). This dataset contains 3 files, each containing
1000 documents labelled 0 or 1 for “negative” or “positive” sentiment. There are
500 of each type of document in each file. One file contains reviews of products
from amazon.com; one contains yelp restaurant reviews, and one contains movie
reviews from imdb.com.

Let’s focus on the amazon reviews data. Here are some samples:

1

So there is no way for me to plug it in here in the US unless I go by a
converter. 0

Good case, Excellent value. 1
Great for the jawbone. 1
Tied to charger for conversations lasting more than 45 minutes.MAJOR

PROBLEMS!! 0
The mic is great. 1
I have to jiggle the plug to get it to line up right to get decent volume

. 0
If you have several dozen or several hundred contacts, then imagine the

fun of sending each of them one by one. 0
If you are Razr owner...you must have this! 1
Needless to say, I wasted my money. 0
What a waste of money and time!. 0

As you can see, each line consists of a product review followed by a 0 or 1; in
this file the review is separated from the text by a tab character.

1.3 Bernoulli tests
We will describe the “Bernoulli” version of a Naive Bayes classifier for this data.
The building block of this method is a test based on a single word. For example,
let’s consider the word great among all of our amazon reviews. It turns out
that great occurs 5 times in negative reviews and 92 times in positive reviews
among our 1000 examples. So it seems that seeing the word great in a review
makes it more likely to be positive. The appearances of great are summarized in
table 1 . We write ~great for the case where great does not appear.

Table 1: Ocurrences of great by type of review .

+ - total
great 92 5 97
~great 408 495 903
total 500 500 1000

In this data, positive and negative reviews are equally likely so P (+) = P (−) = .5
From this table, and Bayes Theorem, we obtain the empirical probabilities (or
“naive” probabilities).

P (great|+) = 92
500 = .184

and

P (great) = 97
1000 = .097

2

Therefore

P (+|great) = .184
.097(.5) = 0.948.

In other words, if you see the word great in a review, there’s a 95% chance that
the review is positive.

What if you do not see the word great? A similar calculation from the table
yields

P (+| ∼ great) = 408
903 = .452

In other words, not seeing the word great gives a little evidence that the review
is negative (there’s a 55% chance it’s negative) but it’s not that conclusive.

The word waste is associated with negative reviews. It’s statistics are summa-
rized in table 2.

Table 2: Ocurrences of waste by type of review .

+ - total
waste 0 14 14
~waste 500 486 986
total 500 500 1000

Based on this data, the “naive” probabilities we are interested in are:

P (+|waste) = 0
P (+| ∼ waste) = .51

In other words, if you see waste you definitely have a negative review, but if
you don’t, you’re only slightly more likely to have a positive one.

What about combining these two tests? Or using even more words? We could
analyze our data to count cases in which both great and waste occur, in which
only one occurs, or in which neither occurs, within the two different categories
of reviews, and then use those counts to estimate empirical probabilities of the
joint events. But while this might be feasible with two words, if we want to use
many words, the number of combinations quickly becomes huge. So instead,
we make a basic, and probably false, assumption, but one that makes a simple
analysis possible.

Assumption: We assume that the presence or absence of the words great
and waste in a particular review (positive or negative) are independent events.

3

More generally, given a collection of words w1, . . . , wk, we assume that their
occurences in a given review are independent events.

Independence means that we have

P (great, waste|±) = P (great|±)P (waste|±)
P (great,∼ waste|±) = P (great|±)P (∼ waste|±)

...

So for example, if a document contains the word great and does not contain
the word waste, then the probability of it being a positive review is:

P (+|great,∼ waste) = P (great|+)P (∼ waste|+)P (+)
P (great,∼ waste)

while the probability of it being a negative review is

P (−|great,∼ waste) = P (great|−)P (∼ waste|−)P (−)
P (great,∼ waste)

Rather than compute these probabilities (which involves working out the denom-
inators), let’s just compare them. Since they have the same denominators, we
just need to compare numerators, which we call L for likelihood: Using the data
from table 1 and table 2, we obtain:

L(+|great,∼ waste) = (.184)(1)(.5) = .092

and
L(−|great,∼ waste) = (.01)(.028)(.5) = .00014

so our data suggests strongly that this is a positive review.

1.4 Feature vectors
To generalize this, suppose that we have extracted keywords w1, . . . , wk from
our data and we have computed the empirical values P (wi|+) and P (wi|−) by
counting the fraction of positive and negative reviews that contain the word wi:

P (wi|±) = number of ± reviews that mention wi

number of ± reviews total

Notice that we only count reviews, not ocurrences, so that if a word occurs
multiple times in a review it only contributes 1 to the count. That’s why this is
called the Bernoulli Naive Bayes – we are thinking of each keyword as yielding
a yes/no test on each review.

4

Given a review, we look to see whether each of our k keywords appears or does
not. We encode this information as a vector of length k containing 0’s and 1’s
indicating the absence or presence of the kth keyword. Let’s call this vector the
feature vector for the review.

For example, if our keywords are w1 = waste, w2 = great, and w3 = useless,
and our review says
This phone is useless, useless, useless! What a waste!

then the associated feature vector is f = (1, 0, 1).

For the purposes of classification of our reviews, we are going to forget entirely
about the text of our reviews and work only with the feature vectors. From an
abstract perspective, then, by choosing our k keywords, our “training set” of N
labelled reviews can be replaced by an N × k matrix X = (xij) with entries 0 or
1, where xij = 1 if and only if the jth keyword appears in the ith review.

The labels of 0 or 1 for unfavorable or favorable reviews can also be packaged
up into a N × 1 vector Y that serves as our “target” variable.

Setting things up this way lets us express the computations of our probabilities
P (wi|±) in vector form. In fact, Y ᵀX is the sum of the rows of X corresponding
to positive reviews, and therefore, letting N± denote the number of ± reviews,

P+ = 1
N+

Y ᵀX =
[

P (w1|+) P (w2|+) · · · P (wk|+)
]

.

Similarly, since Y and X have zero and one entries only, if we write 1− Y and
1 − X for the matrices obtained by replacing every entry z by 1 − z in each
matrix, we have:

P− = 1
N−

(1− Y)ᵀX =
[

P (w1|−) P (w2|−) · · · P (wk|−)
]

.

Note that the number of positive reviews is N+ = Y ᵀY and the number of
negative ones is N− = N −N+. Since P (+) is the fraction of positive reviews
among all reviews, we can compute it as P (+) = 1

N Y ᵀY , and P (−) = 1− P (+).

1.5 Likelihood
If a review has an associated feature vector f = (f1, . . . , fk), then by indepen-
dence the probability of that feature vector ocurring within one of the ± classes
is

P (f |±) =
∏

i:fi=1
P (wi|±)

∏
i:fi=0

(1− P (wi|±))

which we can also write

P (f |±) =
k∏

i=1
P (wi|±)fi(1− P (wi|±))(1−fi). (1)

5

These products aren’t practical to work with – they are often the product of
many, many small numbers and are therefore really tiny. Therefore it’s much
more practical to work with their logarithms.

log P (f |±) =
k∑

i=1
fi log P (wi|±) + (1− fi) log(1− P (wi|±)) (2)

If we have a group of reviews N organized in a matrix X, where each row is the
feature vector associated to the corresponding review, then we can compute all
of this at once. We’ll write log P± = log P (X|±) as the row vector whose ith

entry is log P (fi|±):

log P (X|±) = X(log P±)ᵀ + (1−X)(log(1− P±))ᵀ. (3)

By Bayes Theorem, we can express the chance that our review with feature
vector f is positive or negative by the formula:

log P (±|f) = log P (f |±) + log P (±)− log P (f)

where
P (±) = the number of ± reviews

total number of reviews
and P (f) is the fraction of reviews with the given feature vector. (Note: in
practice, some of these probabilities will be zero, and so the log will not be
defined. A common practical approach to dealing with this is to introduce a
“fake document” into both classes in which every vocabulary word appears – this
guarantees that the frequency matrix will have no zeros in it).

A natural classification rule would be to say that a review is positive if
log P (+|f) > log P (−|f), and negative otherwise. In applying this, we
can avoid computing P (f) by just comparing log P (f |+) + log P (+) and
log P (f |−) + log P (−) computed using eq. 2. Then we say:

• a review is positive if log P (f |+) + log P (+) > log P (f |−) + log P (−) and
negative otherwise.

Again we can exploit the matrix structure to do this for a bunch of reviews at once.
Using eq. 3 and the vectors P± we can compute column vectors corresponding
to both sides of our decision inequality and subtract them. The positive entries
indicate positive reviews, and the negative ones, negative reviews.

1.6 The Bag of Words
In our analysis above, we thought of the presence or absence of certain key
words as a set of independent tests that provided evidence of whether our review
was positive or negative. This approach is suited to short pieces of text, but
what about longer documents? In that case, we might want to consider not just

6

the presence or absence of words, but the frequency with which they appear.
Multinomial Naive Bayes, based on the “bag of words” model, is a classification
method similar to Bernoulli Naive Bayes but which takes term frequency into
account.

Let’s consider, as above, the problem of classifying documents into one of two
classes. We assume that we have a set of keywords w1, . . . , wk. For each class ±,
we have a set of probabilities P (wi|±) with the property that

k∑
i=1

P (wi|±) = 1.

The “bag of words” model says that we construct a document of length N in, say,
the + class by independently drawing a word N times from the set w1, . . . , wk

with probabilities P (wi|+). The name “bag of words” comes from thinking of
each class as having an associated bag containing the words w1, . . . , wk with
relative frequencies given by the probabilities, and generating a document by
repeatedly drawing a word from the bag.

In the Multinomial Naive Bayes method, we estimate the probabilities P (wi|±)
by counting the number of times each word occurs in a document of the given
class:

P (wi|±) = number of times word i occurs in ± documents
total number of words in ± documents

This is the “naive” part of the algorithm. Package up these probabilities in
vectors:

P± =
[

P (w1|±) · · · P (wk|±)
]

.

As in the Bernoulli case, we often add a fake document to each class where all
of the words occur once, in order to avoid having zero frequencies when we take
a logarithm later.

Now, given a document, we associate a feature vector f whose ith entry is the
frequency with which word i appears in that document. The probability of
obtaining a particular document with feature vector f = (f1, . . . , fk) from the
bag of words associated with class ± is given by the “multinomial” distribution:

P (f |±) = N !
i1!i2! · · · ik!

k∏
i=1

P (wi|±)fi

which generalizes the binomial distribution to multiple choices. The constant
will prove irrelevant, so let’s call the product L±):

L(f |±) =
k∏

i=1
P (wi|±)fi

7

From Bayes Theorem, we have

P (±|f) = P (f |±)P (±)
P (f)

where P (±) is estimated by the fraction of documents (total) in each class.

We classify our document by considering P (±|f) and concluding:

• document with feature vector f is in class + if log P (+|f) > log P (−|f).

In this comparison, both the constant (the multinomial coefficient) and the
denominator cancel out, so we only need to compare log L(f |+) + log P (+) with
log L(f |−) + log P (−) We have

log L(f |±) =
k∑

i=1
fi log P (wi|±)

or, in vector form,
log P (f |±) = f log P ᵀ

±

Therefore, just as in the Bernoulli case, we can package up our document i as
an N × k data matrix X, where position ij gives the number of times word j
occurs in document i. Then we can compute the vector

Ŷ = X log P ᵀ
+ + log P (+)−X log P ᵀ

− − log P (−)

and assign those documents where Ŷ > 0 to the + class and the rest to the −
class.

1.7 Other applications
We developed the Naive Bayes method for sentiment analysis, but once we chose
a set of keywords our training data was reduced to an N × k matrix X of 0/1
entries, together with an N × 1 target column vector Y . Then our classification
problem is to decide whether a given vector of k entries, all 0 or 1, is more likely
to carry a 0 or 1 label. All of the parameters we needed for Naive Bayes – the
various probabilities – can be extracted from the matrix X.

For example, suppose we have a collection of images represented as black/white
pixels in a grid that belong to one of two classes. For example, we might have
28x28 bitmaps of handwritten zeros and ones that are labelled, and we wish to
construct a classifier that can decide whether a new 28x28 bitmap is a zero or
one. An example of such a bitmap is given in fig. 1. We can view each 28x28
bitmap as a vector of length 784 with 0/1 entries and apply the same approach
outlined above. However, there are other methods that are more commonly used
for this problem, such as logistic regression and neural networks.

8

Figure 1: Handwritten 0

References
[1] U.C. Irvine ML Repository. Sentiment Labelled Sentences Data Set.Available

at https://archive.ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences.

9

https://archive.ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences

	The Naive Bayes classification method
	Introduction
	An example dataset
	Bernoulli tests
	Feature vectors
	Likelihood
	The Bag of Words
	Other applications

	References

