Consider a function $E : \mathbb{R}^n \to \mathbb{R}$, $\boldsymbol{w} = (w_1, w_2, \dots, w_n) \mapsto E(\boldsymbol{w})$. The gradient ∇E of E is defined by

$$\nabla E := \left(\frac{\partial E}{\partial w_1}, \frac{\partial E}{\partial w_2}, \dots, \frac{\partial E}{\partial w_n}\right).$$

Proposition

 $E(\mathbf{w})$: differentiable in a nbhd of \mathbf{w}

The function $E(\mathbf{w})$ decreases fastest in the direction of $-\nabla E(\mathbf{w})$.

<u>Proof</u>: For a unit vector \boldsymbol{u} , the directional derivative $D_{\boldsymbol{u}}E$ is given by

$$D_{\boldsymbol{u}}\boldsymbol{E} = \lim_{t\to 0} \frac{\boldsymbol{E}(\boldsymbol{w}_0 + t\boldsymbol{u}) - \boldsymbol{E}(\boldsymbol{w}_0)}{t} = g'(0),$$

where $g(t) = E(w_0 + tu)$. Let $w = w_0 + tu$. Using the chain rule,

$$g'(0) = \sum_{i=1}^{n} \frac{\partial E}{\partial w_i} \cdot \frac{dw_i}{dt} = \nabla E \cdot \boldsymbol{u}.$$

Furthermore,

$$D_{\boldsymbol{u}}\boldsymbol{E} = \nabla \boldsymbol{E} \cdot \boldsymbol{u} = |\nabla \boldsymbol{E}| |\boldsymbol{u}| \cos \theta = |\nabla \boldsymbol{E}| \cos \theta,$$

where θ is the angle between ∇E and u. The minimum value of $D_u E$ occurs when $\cos \theta$ is -1.

• Choose an initial point **w**₀.

Set

$$\boldsymbol{w}_{k+1} = \boldsymbol{w}_k - \eta_k \nabla \boldsymbol{E}(\boldsymbol{w}_k)$$

where η_k is the step size or learning rate.

Usually, for some $\eta > 0$, we set $\eta_k = \eta$ for all k.

• From Proposition, we have

$$E(\mathbf{w}_k) \geq E(\mathbf{w}_{k+1}).$$

Under some moderate conditions,

 $E(\mathbf{w}_k) \rightarrow \text{local minimum}$ as $k \rightarrow \infty$.

In particular, this is true when *E* is convex or when ∇E is Lipschitz continuous.

• $\boldsymbol{w}_* = \lim_{k \to \infty} \boldsymbol{w}_k$

We use w_k for a sufficiently large k as an approximation of w_* . This method is called gradient descent. Caveat: Making a right choice of η is crucial.

Example

• Consider
$$E(\mathbf{w}) = E(w_1, w_2) = w_1^4 + w_2^4 - 16w_1w_2$$
.
Then $\nabla E(\mathbf{w}) = [4w_1^3 - 16w_2, 4w_2^3 - 16w_1]$.
Choose $\mathbf{w}_0 = (1, 1)$ and $\eta = 0.01$.
 $\mathbf{w}_{30} = (1.99995558586289, 1.99995558586289)$
 $E(\mathbf{w}_{30}) = -31.9999999368777$

- We see that $\boldsymbol{w}_k \rightarrow (2,2)$ and E(2,2) = -32.
- Indeed, when *w* = (2,2), a local minimum of *E*(*w*) is -32.
 Exercise: Find all the local minima of *E*(*w*).

▲ 伊 → ▲ 王

k	w1	w2	E(w1,w2)
1	1.12000000000000	1.12000000000000	-16.9233612800000
2	1.24300288000000	1.24300288000000	-19.9465014818312
3	1.36506297054983	1.36506297054983	-22.8698545020842
4	1.48172688079195	1.48172688079195	-25.4876645161458
5	1.58867706472624	1.58867706472624	-27.6422269714610
6	1.68247924276483	1.68247924276483	-29.2656452783487
7	1.76116971206054	1.76116971206054	-30.3861816086105
8	1.82445074094736	1.82445074094736	-31.0984991504577
9	1.87344669354831	1.87344669354831	-31.5194128485897
10	1.91018104795404	1.91018104795404	-31.7533053700606
11	1.93701591038872	1.93701591038872	-31.8770223901250
12	1.95622873443784	1.95622873443784	-31.9400248989010
13	1.96977907222858	1.96977907222858	-31.9712142030755
14	1.97923168007769	1.97923168007769	-31.9863406140263
15	1.98577438322011	1.98577438322011	-31.9935701975589
16	1.99027812738069	1.99027812738069	-31.9969902100773
17	1.99336647981957	1.99336647981957	-31.9985965516271
18	1.99547865709166	1.99547865709166	-31.9993473166738
19	1.99692058430943	1.99692058430943	-31.9996970174121
20	1.99790372262623	1.99790372262623	-31.9998595272283
21	1.99857347710339	1.99857347710339	-31.9999349274762
22	1.99902947615421	1.99902947615421	-31.9999698732955
23	1.99933981776146	1.99933981776146	-31.9999860577045
24	1.99955097148756	1.99955097148756	-31.9999935493971
25	1.99969461222478	1.99969461222478	-31.9999970160815
26	1.99979231393118	1.99979231393118	-31.9999986198712
27	1.99985876312152	1.99985876312152	-31.9999993617137
28	1.99990395413526	1.99990395413526	-31.9999997048203
29	1.99993468659806	1.99993468659806	-31.9999998634976
30	1.99995558586289	1.99995558586289	-31.9999999368777

・ロ・・ 日・・ ヨ・・ ヨ・ うへぐ

Q: Can we do linear regression using gradient descent?

$$E = ||Y - XM||^2$$
, $\nabla E = -2X^T(Y - XM)$

- Define $\sigma(x) = \frac{e^x}{e^x + 1} = \frac{1}{1 + e^{-x}}$. It is called a sigmoid function.
- In logistic regression we will minimize the following error function

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \{t_n \ln y_n + (1 - t_n) \ln(1 - y_n)\},\$$

where we write $\mathbf{w} = (w_1, w_2, ..., w_{k+1})$ and $y_n = \sigma(w_1 x_{n1} + w_2 x_{n2} + \cdots + w_k x_{nk} + w_{k+1}).$

• Compute the gradient $\nabla E(\boldsymbol{w})$.

• Crucial identity:

$$\sigma'(\mathbf{x}) = \sigma(\mathbf{x})(\mathbf{1} - \sigma(\mathbf{x}))$$

Thus it is a solution to

$$\frac{dy}{dx} = y(1-y),$$

which is called a logistic equation.

$$(\ln y)' = \frac{1}{y}y' = 1 - y.$$

 $(\ln(1 - y))' = \frac{1}{1 - y}(-y') = -y.$

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \{t_n \ln y_n + (1 - t_n) \ln(1 - y_n)\},\$$

$$y_n = \sigma(w_1 x_{n1} + w_2 x_{n2} + \dots + w_k x_{nk} + w_{k+1}).$$

・ロト・西ト・モン・モー シック

• We have

$$\frac{\partial E}{\partial w_j} = \sum_{n=1}^N (y_n - t_n) x_{nj}$$

• Assume $\nabla E = 0$. When j = k + 1, we have $x_{n,k+1} = 1$ for all n, and

$$\sum_{n=1}^{N} y_n = \sum_{n=1}^{N} t_n.$$

$$\sum_{n=1}^{N} y_n = \sum_{n=1}^{N} \frac{1}{1 + \exp(-(w_1 x_{n1} + w_2 x_{n2} + \dots + w_k x_{nk} + w_{k+1}))}$$

4 A & 4