
1 Principal Component Analysis
1.1 Introduction
Suppose that, as usual, we begin with a collection of measurements of different
features for a group of samples. Some of these measurements will tell us quite a
bit about the difference among our samples, while others may contain relatively
little information. For example, if we are analyzing the effect of a certain weight
loss regimen on a group of people, the age and weight of the subjects may have
a great deal of influence on how successful the regimen is, while their blood
pressure might not. One way to help identify which features are more significant
is to ask whether or not the feature varies a lot among the different samples. If
nearly all the measurements of a feature are the same, it can’t have much power
in distinguishing the samples, while if the measurements vary a great deal then
that feature has a chance to contain useful information.

In this section we will discuss a way to measure the variability of measurements
and then introduce principal component analysis (PCA). PCA is a method for
finding which linear combinations of measurements have the greatest variability
and therefore might contain the most information. It also allows us to identify
combinations of measurements that don’t vary much at all. Combining this
information, we can sometimes replace our original system of features with a
smaller set that still captures most of the interesting information in our data,
and thereby find hidden characteristics of the data and simplify our analysis a
great deal.

1.2 Variance and Covariance
1.2.1 Variance

Suppose that we have a collection of measurements (x1, . . . , xn) of a particular
feature X. For example, xi might be the initial weight of the ith participant in
our weight loss study. The mean of the values (x1, . . . , xn) is

µX = 1
n

n∑
i=1

xi.

The simplest measure of the variability of the data is called its variance.

Definition: The (sample) variance of the data x1, . . . , xn is

σ2
X = 1

n

n∑
i=1

(xi − µX)2 = 1
n

(
n∑
i=1

x2
i

)
− µ2

X (1)

The square root of the variance is called the standard deviation.
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As we see from the formula, the variance is a measure of how ‘spread out’ the
data is from the mean.

Recall that in our discussion of linear regression we thought of our set of
measurements x1, . . . , xn as a vector – it’s one of the columns of our data matrix.
From that point of view, the variance has a geometric interpretation – it is 1

N
times the square of the distance from the point X = (x1, . . . , xn) to the point
µX(1, 1, . . . , 1) = µXE:

σ2
X = 1

n
(X − µXE) · (X − µXE) = 1

n
‖X − µXE‖2. (2)

1.2.2 Covariance

The variance measures the dispersion of measures of a single feature. Often, we
have measurements of multiple features and we might want to know something
about how two features are related. The covariance is a measure of whether two
features tend to be related, in the sense that when one increases, the other one
increases; or when one increases, the other one decreases.

Definition: Given measurements (x1, . . . , xn) and (y1, . . . , yn) of two features
X and Y , the covariance of X and Y is

σXY = 1
N

N∑
i=1

(xi − µX)(yi − µY ) (3)

There is a nice geometric interpretation of this, as well, in terms of the dot
product. If X = (x1, . . . , xn) and Y = (y1 . . . , yn) then

σXY = 1
N

((X − µXE) · (Y − µY E)).

From this point of view, we can see that σXY is positive if the X − µXE and
Y − µY E vectors “point roughly in the same direction” and its negative if they
“point roughly in the opposite direction.”

1.2.3 Correlation

One problem with interpreting the variance and covariance is that we don’t have
a scale – for example, if σXY is large and positive, then we’d like to say that X
and Y are closely related, but it could be just that the entries of X − µXE and
Y − µY E are large. Here, though, we can really take advantage of the geometric
interpretation. Recall that the dot product of two vectors satisfies the formula

a · b = ‖a‖‖b‖ cos(θ)
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where θ is the angle between a and b. So

cos(θ) = a · b
‖a‖‖b‖

.

Let’s apply this to the variance and covariance, by noticing that

(X − µXE) · (Y − µY E)
‖(X − µXE)‖‖(Y − µY E)‖ = σXY

σXXσY Y

so the quantity

rXY = σXY
σXσY

(4)

measures the cosine of the angle between the vectors X − µXE and Y − µY E.

Definition: The quantity rXY defined in eq. 4 is called the (sample) correlation
coefficient between X and Y . We have 0 ≤ |rXY | ≤ 1 with rXY = ±1 if and
only if the two vectors X − µX and Y − µY are collinear in Rn.

Figure 1 illustrates data with different values of the correlation coefficient.

Figure 1: Correlation

1.2.4 The covariance matrix

In a typical situation we have many features for each of our (many) samples, that
we organize into a data matrix X. To recall, each column of X corresponds to a
feature that we measure, and each row corresponds to a sample. For example,
each row of our matrix might correspond to a person enrolled in a study, and
the columns correspond to height (cm), weight (kg), systolic blood pressure, and
age (in years):

Table 1: A sample data matrix X

sample Ht Wgt Bp Age
A 180 75 110 35
B 193 80 130 40
. . . . . . . . . . . . . . .
U 150 92 105 55
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If we have multiple features, as in this example, we might be interested in the
variance of each feature and all of their mutual covariances. This “package” of
information can be obtained “all at once” by taking advantage of some matrix
algebra.

Definition: Let X be a N×k data matrix, where the k columns of X correspond
to different features and the N rows to different samples. Let X0 be the centered
version of this data matrix, obtained by subtracting the mean µi of column i
from all the entries xsi in that column. Then the k × k symmetric matrix

D0 = 1
N
Xᵀ

0X0

is called the (sample) covariance matrix for the data.

Proposition: The diagonal entries dii of D0 are the variances of the columns
of X:

dii = σ2
i = 1

N

N∑
s=1

(xsi − µi)2

and the off-diagonal entries dij = dji are the covariances of the ith and jth

columns of X:

dij = σij = 1
N

N∑
s=1

(xsi − µi)(xsj − µj)

The sum of the diagonal entries, the trace of D0 is the total variance of the
data.

Proof: This follows from the definitions, but it’s worth checking the details,
which we leave as an exercise.

1.2.5 Visualizing the covariance matrix

If the number of features in the data is not too large, a density matrix plot
provides a tool for visualizing the covariance matrix of the data. A density
matrix plot is an k × k grid of plots (where k is the number of features). The
entry with (i, j) coordinates in the grid is a scatter plot of the ith feature against
the jth one if i 6= j, and is a histogram of the ith variable if i = j.

Figure 2 is an example of a density matrix plot for a dataset with 50 samples and
2 features. This data has been centered, so it can be represented in a 50× 2 data
matrix X0. The upper left and lower right graphs are scatter plots of the two
columns, while the lower left and upper right are the histograms of the columns.
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Figure 2: Density Matrix Plot

1.2.6 Linear Combinations of Features (Scores)

Sometimes useful information about our data can be revealed if we combine
different measurements together to obtain a “hybrid” measure that captures
something interesting. For example, in the Auto MPG dataset that we studied
in the section on Linear Regression, we looked at the influence of both vehicle
weight w and engine displacement e on gas mileage; perhaps their is some value
in considering a hybrid “score” defined as

S = aw + be

for some constants a and b – maybe by choosing a good combination we could
find a better predictor of gas mileage than using one or the other of the features
individually.

As another example, suppose we are interested in the impact of the nutritional
content of food on weight gain in a study. We know that both calorie content
and the level dietary fiber contribute to the weight gain of participants eating
this particular food; maybe there is some kind of combined “calorie/fiber” score
we could introduce that captures the impact of that food better.

Definition: Let X0 be a (centered) N ×k data matrix giving information about
k features for each of N samples. A linear synthetic feature, or a linear score, is
a linear combination of the k features. The linear score is defined by constants
a1, . . . , ak so that If y1, . . . , yk are the values of the features for a particular
sample, then the linear score for that sample is

S = a1y1 + a2y2 + · · ·+ akyk
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Lemma: The values of the linear score for each of the N samples can be
calculated as

S1
...
SN

 = X0

a1
...
ak

 . (5)

Proof: Multiplying a matrix by a column vector computes a linear combination
of the columns – that’s what this lemma says. Exercise 3 asks you to write out
the indices and make sure you believe this.

1.2.7 Mean and variance of scores

When we combine features to make a hybrid score, we assume that the features
were centered to begin with, so that each features has mean zero. As a result,
the mean of the hybrid features is again zero.

Lemma: A linear combination of features with mean zero again has mean zero.

Proof: Let Si be the score for the ith sample, so

Si =
k∑
j=1

xijaj .

where X0 has entries xij . Then the mean value of the score is

µS = 1
k

N∑
i=1

Si = 1
N

N∑
i=1

k∑
j=1

xijaj .

Reversing the order of the sum yields

µS = 1
N

k∑
j=1

N∑
i=1

xijaj =
k∑
j=1

aj
1
N

(
N∑
i=1

xij) =
k∑
j=1

ajµj = 0

where µj = 0 is the mean of the jth feature (column) of X0.

The variance is more interesting, and gives us an opportunity to put the covariance
matrix to work. Remember from 2 that, since a score S has mean zero, it’s
variance is σ2

S = 1
N S · S – where here the score S is represented by the column

vector with entries S1, . . . Sk as in eq. 5.

Lemma: The variance of the score S with weights a1, . . . ak is

σ2
S = aᵀD0a =

[
a1 · · · ak

]
D0

a1
...
ak

 (6)
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More generally, if S1 and S2 are scores with weights a1, . . . , ak and b1, . . . , bk
respectively, then the covariance σS1S2 is

σS1S2 = aᵀD0b.

Proof: From eq. 2 and 5 we know that

σ2
S = 1

N
S · S

and
S = X0a.

Since 1
N S · S = 1

N S
ᵀS, this gives us

1
N
σ2
S = 1

N
(X0a)ᵀ(X0a) = 1

N
aᵀXᵀ

0X0a = aᵀD0a

as claimed.

For the covariance, use a similar argument with eq. 3 and eq. 5. writing
σS1S2 = 1

N S1 · S2 and the fact that S1 and S2 can be written as X0a and X0b.

The point of this lemma is that the covariance matrix contains not just the
variances and covariances of the original features, but also enough information to
construct the variances and covariances for any linear combination of features.

In the next section we will see how to exploit this idea to reveal hidden structure
in our data.

1.2.8 Geometry of Scores

Let’s return to the dataset that we looked at in section 1.2.5. We simplify the
density matrix plot in fig. 3, which shows one of the scatter plots and the two
histograms.

The scatter plot shows that the data points are arranged in a more or less
elliptical cloud oriented at an angle to the xy-axes which represent the two given
features. The two individual histograms show the distribution of the two features
– each has mean zero, with the x-features distributed between −2 and 2 and
the y feature between −4 and 4. Looking just at the two features individually,
meaning only at the two histograms, we can’t see the overall elliptical structure.

How can we get a better grip on our data in this situation? We can try to find
a “direction” in our data that better illuminates the variation of the data. For
example, suppose that we pick a unit vector at the origin pointing in a particular
direction in our data. See fig. 4.

Now we can orthogonally project the datapoints onto the line defined by this
vector, as shown in fig. 5.
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Figure 3: Simulated Data with Two Features

Figure 4: A direction in the data

Figure 5: Projecting the datapoints
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Recall that if the unit vector is defined by coordinates u = [u0, u1], then the
orthogonal projection of the point x with coordinates (x0, x1) is (x · u)u. Now

x · u = u0x0 + u1x1

so the coordinates of the points along the line defined by u are the values of the
score Z defined by u = [u0, u1]. Using our work in the previous section, we see
that we can find all of these coordinates by matrix multiplication:

Z = X0u

where X0 is our data matrix. Now let’s add a histogram of the values of Z to
our picture:

Figure 6: Distribution of Z

This histogram shows the distribution of the values of Z along the tilted line
defined by the unit vector u.

Finally, using our work on the covariance matrix, we see that the variance of Z
is given by

σ2
Z = 1

50u
ᵀXᵀ

0X0u = uᵀD0u

where D0 is the covariance matrix of the data X0.

Lemma: Let X0 be a N × k centered data matrix, and let D0 = 1
NX

ᵀ
0X0 be

the associated covariance matrix. Let u be a unit vector in “feature space” Rk.
Then the score S = X0u can be interpreted as the coordinates of the points of
X0 projected onto the line generated by u. The variance of this score is

σ2
S = uᵀD0u =

N∑
i=1

s2
i

where si = X0[i, :]u is the dot product of the ith row X0[i, :] with u. It measures
the variability in the data “in the direction of the unit vector u.”

1.3 Principal Components
1.3.1 Change of variance with direction

As we’ve seen in the previous section, if we choose a unit vector u in the feature
space and find the projection X0u of our data onto the line through u, we get a
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“score” that we can use to measure the variance of the data in the direction of u.
What happens as we vary u?

To study this question, let’s continue with our simulated data from the previous
section, and introduce a unit vector

u(θ) =
[
cos(θ) sin(θ)

]
.

This is in fact a unit vector, since sin2(θ) + cos2(θ) = 1, and it is oriented at an
angle θ from the x-axis.

The variance of the data in the direction of u(θ) is given by

σ2
θ = u(θ)ᵀD0u(θ).

A plot of this function for the data we have been considering is in fig. 7. As you
can see, the variance goes through two full periods with the angle, and it reaches
a maximum and minimum value at intervals of π/2 – so the two angles where
the variance are maximum and minimum are orthogonal to one another.

Figure 7: Change of variance with angle theta

The two directions where the variance is maximum and minimum are drawn on
the original data scatter plot in fig. 8 .

Figure 8: Data with principal directions

Let’s try to understand why this is happening.
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1.3.2 Directions of extremal variance

Given our centered, N × i data matrix X0, with its associated covariance matrix
D0 = 1

NX
ᵀ
0X0, we would like to find unit vectors u in Rk so that

σ2
u = uᵀD0u

reaches its maximum and its minimum. Here σ2
u is the variance of the “linear

score” X0u and it represents how dispersed the data is in the “u direction” in
Rk.

In this problem, remember that the coordinates of u = (u1, . . . , uk) are the
variables and the symmetric matrix D0 is given. As usual, we to find the
maximum and minimum values of σ2

u, we should look at the partial derivatives
of σ2

u with respect to the variables ui and set them to zero. Here, however, there
is a catch – we want to restrict u to being a unit vector, with u · u =

∑
u2
i = 1.

So this is a constrained optimization problem:

• Find extreme values of the function

σ2
u = uᵀD0u

• Subject to the constraint ‖u‖2 = u · u = 1 (or u · u− 1 = 0)

We will use the technique of Lagrange Multipliers to solve such a problem.

To apply this method, we introduce the function

S(u, λ) = uᵀD0u− λ(u · u− 1) (7)

Then we compute the gradient

∇S =


∂S
∂u1...
∂S
∂uk
∂S
∂λ

 (8)

and solve the system of equations ∇S = 0. Here we have written the gradient as
a column vector for reasons that will become clearer shortly.

Computing all of these partial derivatives looks messy, but actually if we take
advantage of matrix algebra it’s not too bad. The following two lemmas explain
how to do this.

Lemma: Let M be a N × k matrix with constant coefficients and let u be a
k × 1 column vector whose entries are u1, . . . uk. The function F (u) = Mu is a
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linear map from Rk → RN . Its (total) derivative is a linear map between the
same vector spaces, and satisfies

D(F )(v) = Mv

for any k × 1 vector v. If u is a 1×N matrix, and G(u) = uM , then

D(G)(v) = vM

for any 1×N vector v. (This is the matrix version of the derivative rule that
d
dx (ax) = a for a constant a.)

Proof: Since F : Rk → RN , we can write out F in more traditional function
notation as

F (u) = (F1(u1, . . . , uk), . . . , FN (u1, . . . , uk)
where

Fi(u1, . . . uk) =
k∑
j=1

mijuj .

Thus ∂Fi

∂uj
= mij . The total derivative D(F ) is the linear map with matrix

D(F )ij = ∂Fi
∂uj

= mij

and so D(F ) = M .

The other result is proved the same way.

Lemma: Let D be a symmetric k× k matrix with constant entries and let u be
an k × 1 column vector of variables u1, . . . , uk. Let F : Rk → R be the function
F (u) = uᵀDu. Then the gradient ∇uF is a vector field – that is, a vector-valued
function of u, and is given by the formula

∇uF = 2Du

Proof: Let dij be the i, j entry of D. We can write out the function F to obtain

F (u1, . . . , uk) =
k∑
i=1

k∑
j=1

uidijuj .

Now ∂F
∂ui

is going to pick out only terms where ui appears, yielding:

∂F

∂ui
=

k∑
j=1

dijuj +
k∑
j=1

ujdji

Here the first sum catches all of the terms where the first “u” is ui; and the
second sum catches all the terms where the second “u” is ui. The diagonal terms
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u2
i dii contribute once to each sum, which is consistent with the rule that the

derivative of u2
i dii = 2uidii. To finish the proof, notice that

k∑
j=1

ujdji =
k∑
j=1

dijuj

since D is symmetric, so in fact the two terms are the same Thus

∂

∂ui
F = 2

k∑
j=1

dijuj

But the right hand side of this equation is twice the ith entry of Du, so putting
the results together we get

∇uF =


∂F
∂u1...
∂F
∂uk

 = 2Du.

The following theorem puts all of this work together to reduce our questions
about how variance changes with direction.

1.3.3 Critical values of the variance

Theorem: The critical values of the variance σ2
u, as u varies over unit vectors

in RN , are the eigenvalues λ1, . . . , λk of the covariance matrix D, and if ei is a
unit eigenvector corresponding to λi, then σ2

ei
= λi.

Proof: Recall that we introduced the Lagrange function S(u, λ), whose critical
points give us the solutions to our constrained optimization problem. As we said
in eq. 7:

S(u, λ) = uᵀD0u− λ(u · u− 1) = uᵀD0u− λ(u · u) + λ

Now apply our Matrix calculus lemmas. First, let’s treat λ as a constant and
focus on the u variables. We can write u · u = uᵀINu where IN is the identity
matrix to compute:

∇uS = 2D0u− 2λu
For λ we have

∂

∂λ
S = −u · u+ 1.

The critical points occur when

∇uS = 2(D0 − λ)u = 0

and
∂

∂λ
S = 1− u · u = 0
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The first equation says that λ must be an eigenvalue, and u an eigenvector:

D0u = λu

while the second says u must be a unit vector u · u = ‖u‖2 = 1. The second part
of the result follows from the fact that if ei is a unit eigenvector with eigenvalue
λi then

σ2
ei

= eᵀiD0ei = λi‖ei‖2 = λi.

To really make this result pay off, we need to recall some key facts about the
eigenvalues and eigenvectors of symmetric matrices. Because these facts are so
central to this result, and to other applications throughout machine learning
and mathematics generally, we provide proofs in section 1.5.

Table 2: Properties of Eigenvalues of Real Symmetric Matrices

Summary
1. All of the eigenvalues λ1, . . . , λl of D are real. If uᵀDu ≥ 0 for all u ∈ Rk,
then all eigenvalues λi are non-negative. In the latter case we say that D is
positive semi-definite.
2. If v is an eigenvector for D with eigenvalue λ, and w is an eigenvector with
a different eigenvalue λ′, then v and w are orthogonal: v · w = 0.
3. There is an orthonormal basis u1, . . . , uk of Rk made up of eigenvectors of
D corresponding to the eigenvalues λi.
4. Let Λ be the diagonal matrix with entries λ1, . . . , λN and let P be the
matrix whose columns are made up of the vectors ui. Then D = PΛP ᵀ.

If we combine this theorem with the facts summarized in table 2 then we get a
complete picture. Let D0 be the covariance matrix of our data. Since

σ2
u = uᵀD0u ≥ 0(it’s a sum of squares)

we know that the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0 are all nonnegative.
Choose a corresponding sequence u1, . . . uk of orthogonal eigenvectors where all
‖ui‖2 = 1. Since the ui form a basis of RN , any score is a linear combination of
the ui:

S =
k∑
i=1

aiui.

Since uᵀiD0uj = λju
ᵀ
i uj = 0 unless i = j, in which case it is λi, we can compute

σ2
S =

k∑
i=1

λia
2
i ,
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and ‖S‖2 =
∑k
i=1 a

2
i since the ui are an orthonormal set. So in these coordinates,

our optimization problem is:

• maximize
∑
λia

2
i

• subject to the constraint
∑
a2
i = 1.

We don’t need any fancy math to see that the maximum happens when a1 = 1
and the other aj = 0, and in that case, the maximum is λ1. (If λ1 occurs more
than once, there may be a whole subspace of directions where the variance is
maximal). Similarly, the minimum value is λk and occurs when ak = 1 and the
others are zero.

1.3.4 Subspaces of extremal variance

We can generalize the question asked in section 1.3.2 by seeking, not just a vector
u pointing in the direction of the extremal variance, but instead the subspace Us
of dimension s with the property that the total variance of the projection of the
data into Us is maximal compared to its projection into other subspaces of that
dimension.

To make this concrete, suppose we consider a subspace E of Rk of dimension t
with basis w1, . . . , wt. Complete this to a basis w1, . . . , wt, wt+1, . . . , wk of Rk

and then apply the Gram Schmidt Process (see section 1.5.1) to find an orthonor-
mal basis w′1, . . . , w′s, w′s+1, . . . , w

′
k where the w′1, . . . , w′t are an orthonormal basis

for E. Let W be the k × t matrix whose columns are the w′i for i = 1, . . . , t.
The rows of the matrix X0W given the coordinates of the projection of each
sample into the subspace E expressed in terms of the scores corresponding to
these vectors w′i. The total variance of these projections is

σ2
E =

t∑
i=1
‖X0w

′
i‖2 =

t∑
i=1

(w′i)ᵀX
ᵀ
0X0w

′
i =

t∑
i=1

(w′i)ᵀD0w
′
i

If we want to maximize this, we have the constrained optimization problem of
finding w′1, . . . , w′t so that

•
∑t
i=1(w′i)ᵀD0w

′
i is maximal

• subject to the constraint that each wi has ‖w′i‖2 = 1,
• and that the w′i are orthogonal, meaning w′i · w′j = 0 for i 6= j,
• and that the w′i are linearly independent.

Then the span E of these w′i is subspace of extremal variance.

Theorem: A t-dimensional subspace E is a subspace of extremal variance
if and only if it is spanned by t orthonormal eigenvectors of the matrix D0
corresponding to the t largest eigenvalues for D0.

Proof: We can approach this problem using Lagrange multipliers and matrix
calculus if we are careful. Our unknown is k× t matrix W whose columns are the
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t (unknown) vectors w′i. The objective function that we are seeking to maximize
is

F = trace(W ᵀD0W ) =
t∑
i=1

(w′i)ᵀD0wi.

The constraints are the requirements that ‖w′i‖2 = 1 and w′i · w′j = 0 if i 6= j.
If we introduction a matrix of lagrange multipliers Λ = (λij), where λij is the
multiplier that goes with the the first of these constraints when i = j, and the
second when i 6= j, we can express our Lagrange function as:

S(W,Λ) = trace(W ᵀD0W )− (W ᵀW − I)Λ

where I is the t× t identity matrix.

Taking the derivatives with respect to the entries of W and of Λ yields the
following two equations:

D0W = WΛ
W ᵀW = I

The first of these equations says that the space E spanned by the columns of
W is invariant under D0, while the second says that the columns of W form an
orthonormal basis.

Let’s assume for the moment that we have a matrix W that satisfies these
conditions.
Then it must be the case that Λ is a symmetric, real valued t× t matrix, since

W ᵀD0W = W ᵀWΛ = Λ.

and the matrix on the left is symmetric.

By the properties of real symmetric matrices (the spectral theorem), there are
orthonormal vectors q1, . . . qt that are eigenvectors of Λ with corresponding
eigenvalues τi. If we let Q be the matrix whose columns are the vectors qi and
let T be the diagonal t× t matrix whose entries are the τi, we have

ΛQ = QT.

If we go back to our original equations, we see that if W exists such that
DW = WΛ, then there is a matrix Q with orthonormal columns and a diagonal
matrix T such that

D0WQ = WΛQ = WQT.

In other words, WQ is a matrix whose columns are eigenvectors of D0 with
eigenvalues τi for i = 1, . . . , t.
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Thus we see how to construct an invariant subspace E and a solution matrix W .
Such an E is spanned by t orthonormal eigenvectors qi with eigenvalues τi of
D0; and W is is the matrix whose columns are the qi. Further, in that case, the
total variance associated to E is the sum of the eigenvalues τi; to make this as
large as possible, we should choose our eigenvectors to correspond to t of the
largest eigenvalues of D0. This concludes the proof.

1.3.5 Definition of Principal Components

Definition: The orthonormal unit eigenvectors ui for D0 are the principal
directions or principal components for the data X0.

Theorem: The maximum variance occurs in the principal direction(s) associated
to the largest eigenvalue, and the minimum variance in the principal direction(s)
associated with the smallest one. The covariance between scores in principal
directions associatedwith different eigenvalues is zero.

At this point, the picture in fig. 8 makes sense – the red and green dashed lines
are the principal directions, they are orthogonal to one another, and the point
in the directions where the data is most (and least) “spread out.”

Proof: The statement about the largest and smallest eigenvalues is proved at
the very end of the last section. The covariance of two scores corresponding to
different eigenvectors ui and uj is

uᵀiD0uj = λj(ui · uj) = 0

since the ui and uj are orthogonal.

Sometimes the results above are presented in a slightly different form, and may
be referred to, in part, as Rayleigh’s theorem.

Corollary: (Rayleigh’s Theorem) Let D be a real symmetric matrix and let

H(v) = max
v 6=0

vᵀDv

vᵀv
.

Then H(v) is the largest eigenvalue of D. (Similarly, if we replace max by min,
then the minimum is the least eigenvalue).

Proof: The maximum of the function H(v) is the solution to the same opti-
mization problem that we considered above.

Exercises.

1. Prove that the two expressions for σ2
X given in section 1.2.1 are the same.

2. Prove that the covariance matrix is as described in the proposition in 1.2.4.

3. Let X0 be a k ×N matrix with entries xij for 1 ≤ i ≤ k and 1 ≤ j ≤ N .
If a linear score is defined by the constants a1, . . . aN , check that equation
eq. 5 holds as claimed.

17



4. Why is it important to use a unit vector when computing the variance of
X0 in the direction of u? Suppose v = λu where u is a unit vector and
λ > 0 is a constant. Let S′ be the score X0v. How is the variance of S′
related to that of S = X0u?

1.4 Dimensionality Reduction via Principal Components
The principal components associated with a dataset separate out directions in
the feature space in which the data is most (or least) variable. One of the main
applications of this information is to enable us to take data with a great many
features – a set of points in a high dimensional space – and, by focusing our
attention on the scores corresponding to the principal directions, capture most
of the information in the data in a much lower dimensional setting.

To illustrate how this is done, let X be a N × k data matrix, let X0 be its
centered version, and let D0 = 1

NX
ᵀ
0X be the associated covariance matrix.

Apply the spectral theorem (described in table 2) and proved in section 1.5 to
the covariance matrix to obtain eigenvalues λ1 ≥ λ2 ≥ · · ·λk ≥ 0 and associated
eigenvectors u1, . . . , uk. The scores Si = X0ui give the values of the data in the
principal directions. The variance of Si is λi.

Now choose a number t < k and consider the vectors S1, . . . , St. The jth entry in
Si is the value of the score Si for the jth data point. Because S1, . . . , St capture
the most significant variability in the original data, we can learn a lot about our
data by considering just these t features of the data, instead of needing all N .

To illustrate, let’s look at an example. We begin with a synthetic dataset X0
which has 200 samples and 15 features. The data (some of it) for some of the
samples is shown in table 3.

Table 3: Simulated Data for PCA Analysis

f-0 f-1 f-2 f-3 f-4 ... f-10 f-11 f-12 f-13 f-14
s-0 1.18 -0.41 2.02 0.44 2.24 ... 0.32 0.95 0.88 1.10 0.89
s-1 0.74 0.58 1.54 0.23 2.05 ... 0.99 1.14 1.56 0.99 0.59
... ... ... ... ... ... ... ... ... ... ... ...
s-198 1.04 2.02 1.44 0.40 1.33 ... 0.62 0.62 0.54 1.96 0.04
s-199 0.92 2.09 1.58 1.19 1.17 ... 0.42 0.85 0.83 2.22 0.90

The full dataset is a 200× 15 matrix; it has 3000 numbers in it and we’re not
really equipped to make sense of it. We could try some graphing – for example,
fig. 9 shows a scatter plot of two of the features plotted against each other.

Unfortunately there’s not much to see in fig. 9 – just a blob – because the
individual features of the data don’t tell us much in isolation, whatever structure
there is in this data arises out of the relationship between different features.
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Figure 9: Scatter Plot of Two Features

In fig. 10 we show a “density grid” plot of the data. The graph in position i, j
shows a scatter plot of the ith and jth columns of the data, except in the diagonal
positions, where in position i, i we plot a histogram of column i. There’s not
much structure visible; it is a lot of blobs.

Figure 10: Density Grid Plot of All Features

So let’s apply the theory of principal components. We use a software package to
compute the eigenvalues and eigenvectors of the matrix D0. The 15 eigenvalues
λ1 ≥ · · · ≥ λ15 are plotted, in descending order, in fig. 11 .

This plot shows that the first 4 eigenvalues are relatively large, while the remaining
11 are smaller and not much different from each other. We interpret this as
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Figure 11: Eigenvalues of the Covariance Matrix

saying that most of the variation in the data is accounted for by the first four
principal components. We can even make this quantitative. The total variance of
the data is the sum of the eigenvalues of the covariance matrix – the trace of D0
– and in this example that sum is around 5. The sum of the first 4 eigenvalues is
about 4, so the first four eignvalues account for about 4/5 of the total variance,
or about 80% of the variation of the data.

Now let’s focus in on the two largest eigenvalues λ1 and λ2 and their corresponding
eigenvectors u1 and u2. The 200× 1 column vectors S1 = X0u1 and S2 = X0u2
are the values of the scores associated with these two eigenvectors. So for each
data point (each row of X0) we have two values (the corresponding entries of S1
and S2.) In fig. 12 we show a scatter plot of these scores.

Notice that suddenly some structure emerges in our data! We can see that the
200 points are separated into five clusters, distinguished by the values of their
scores! This ability to find hidden structure in complicated data, is one of the
most important applications of principal components.

If we were dealing with real data, we would now want to investigate the different
groups of points to see if we can understand what characteristics the principal
components have identified.

1.4.1 Loadings

There’s one last piece of the PCA puzzle that we are going to investigate. In
fig. 12, we plotted our data points in the coordinates given by the first two
principal components. In geometric terms, we took the cloud of 200 points in
R15 given by the rows of X0 and projected those points into the two dimensional
plane spanned by the eigenvectors u1 and u2, and then plotted the distribution
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Figure 12: Scatter Plot of Scores in the First Two Principal Directions

of the points in that plane.

More generally, suppose we take our dataset X0 and consider the first t principal
components corresponding to the eigenvectors u1, . . . , ut. The projection of the
data into the space spanned by these eigenvectors is the represented by the
S = k × t matrix X0U where U is the k × t matrix whose columns are the
eigenvectors ui. Each row of S gives the values of the score arising from ui in
the ith column for i = 1, . . . , t.

The remaining question that we wish to consider is: how can we see some
evidence of the original features in subspace? We can answer this by imagining
that we had an artificial sample x that has a measurement of 1 for the ith feature
and a measurement of zero for all the other features. The corresponding point is
represented by a 1× k row vector with a 1 in position i. The projection of this
synthetic sample into the span of the first t principal components is the 1× t
vector xU . Notice, however, that xU is just the ith row of the matrix U . This
vector in the space spanned by the ui is called the “loading” of the ith feature in
the principal components.

This is illustrated in section 1.4.1, which shows a line along the direction of the
loading corresponding to the each feature added to the scatter plot of the data
in the plane spanned by the first two principal components. One observation
one can make is that some of the features are more “left to right,” like features 7
and 8, while others are more “top to bottom,” like 6. So points that lie on the
left side of the plot have smaller values of features 7 and 8, while those at the
top of the plot have larger values of feature 6.

In the next, and last, section, of this discussion of Principal Component Analysis,
we will give proofs of the key mathematical ideas summarized earlier in table 2,
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Figure 13: Loadings in the Principal Component Plane

which have been central to this analysis.

1.4.2 The singular value decomposition

The singular value decomposition is a slightly different way of looking at principal
components. Let Λ be the diagonal matrix of eigenvalues of D0; we know that
the entries of D0 are non-negative. Let’s drop the eigenvectors corresponding
to the zero eigenvalue. Let’s say that there are s non-zero eigenvalues, and s
corresponding eigenvectors.

Lemma: Let P ′ be the N × s matrix whose columns are the eigenvectors with
non-zero eigenvalues, and let Λ+ be the s× s diagonal matrix whose entries are
the non-zero eigenvalues. Then P ′Λ+P

′ᵀ = PΛP ᵀ = D0.

Proof: First observe that P ′Λ+P
′ᵀ is in fact an N ×N matrix. Then look at

the block structure to verify the result.

The matrix Λ+ is diagonal, invertible, and, since the eigenvalues are positive, it
makes sense to consider the real matrix Λ1/2

+ whose entries are the square roots
of the eigenvalues.

Let U = X0P
′Λ−1/2

+ . Note that U is a k × s dimensional matrix.

Lemma: The columns of U are orthonormal.

Proof: Compute the s×s matrix UᵀU , whose entries are all of the dot products
of the columns of U :

UᵀU = Λ−1/2
+ P ′ᵀXᵀ

0X0P
′Λ−1/2

+

= Λ−1/2
+ P ′ᵀP ′Λ+P

′ᵀP ′Λ−1/2
+

= Is
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by the previous lemma and the fact that P ′P ′ᵀ is the s× s identity matrix.

Rearranging this yields the singular value decomposition.

Theorem: (The singular value decomposition) The matrix X0 has a decompo-
sition:

X0 = UΛ−1/2
+ P ′ᵀ

where U (of dimension k × s) and P ′ (of dimension N × s) are orthogonal, and
Λ+ (of dimension s × s) is diagonal with positive entries. Furthermore, the
entries of Λ+ are the non-negative eigenvalues of D0 = Xᵀ

0X0, and U and P ′
are uniquely determined by X0.

Proof: We won’t work through all of this, as it is a reinterpretation of our work
on principal components.

Remark: The entries of Λ−1/2
+ are called the singular values of X0. They can

be found directly by considering the optimization problem implicitly equivalent
to the problem we solved in section 1.3.4.

1.5 Eigenvalues and Eigenvectors of Real Symmetric Ma-
trices (The Spectral Theorem)

Now that we’ve shown how to apply the theory of eigenvalues and eigenvectors
of symmetric matrices to extract principal directions from data, and to use those
principal directions to find structure, we will give a proof of the properties that
we summarized in table 2.

A key tool in the proof is the Gram-Schmidt orthogonalization process.

1.5.1 Gram-Schmidt

Proposition (Gram-Schmidt Process): Let w1, . . . , wk be a collection of
linearly independent vectors in RN and letW be the span of the wi. Let u1 = w1
and let

ui = wi −
i−1∑
j=1

wi · uj
uj · uj

uj

for i = 2, . . . , k. Then

• The vectors ui are orthogonal: ui · uj = 0 unless i = j.
• The vectors ui span W .
• Each ui is orthogonal to the all of w1, . . . , wi−1.
• The vectors u′i = ui/‖ui‖ are orthonormal.

Proof: This is an inductive exercise, and we leave it to you to work out the
details.
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1.5.2 The spectral theorem

Theorem: Let D be a real symmetric N ×N matrix. Then:

1. All of the N eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λN are real. If uᵀDu ≥ 0 for all
u ∈ RN , then all eigenvalues λi ≥ 0.

2. The matrix D is diagonalizable – that is, it has N linearly independent
eigenvectors.

3. If v and w are eigenvectors corresponding to eigenvalues λ and λ′, with
λ 6= λ′, then v and w are orthogonal: v · w = 0.

4. There is an orthonormal basis u1, . . . , uN of RN made up of eigenvectors
for the eigenvalues λi.

5. Let Λ be the diagonal matrix with entries λ1, . . . , λN and let P be the
matrix whose columns are made up of the eigenvectors ui. Then D =
PΛP ᵀ.

Proof: Start with 1. Suppose that λ is an eigenvalue of D. Let u be a
corresponding nonzero eigenvector. Then Du = λu and Du = λu, where u is
the vector whose entries are the conjugates of the entries of u (and D = D since
D is real). Now we have

uᵀDu = λu · u = λ‖u‖2

and
uᵀDu = λu · u = λ‖u‖2.

But the left hand side of both of these equations are the same (take the transpose
and use the symmetry of D) so we must have λ‖u‖2 = λ‖u‖2 so λ = λ, meaning
λ is real.

If we have the additional property that uᵀDu ≥ 0 for all u, then in particular
uᵀiDui = λ‖u‖2 ≥ 0, and since ‖u‖2 > 0 we must have λ ≥ 0.

Property 2 is in some ways the most critical fact. We know from the general
theory of the characteristic polynomial, and the fundamental theorem of algebra,
that D has N complex eigenvalues, although some may be repeated. However,
it may not be the case that D has N linearly independent eigenvectors – it may
not be diagonalizable. So we will establish that now.

A one-by-one matrix is automatically symmetric and diagonalizable. In the
N -dimensional case, we know, at least, that D has at least one eigenvector,
and real one at that by part 1, and this gives us a place to begin an inductive
argument.

Let vN 6= 0 be an eigenvector with eigenvalue λ and normalized so that ‖vN‖2 =
1,
and extend this to a basis v1, . . . vN of RN . Apply the Gram-Schmidt process
to construct an orthonormal basis of RN u1, . . . , uN so that uN = vN .
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Any vector v ∈ RN is a linear combination

v =
N∑
i=1

aiui

and, since the ui are orthonormal, the coefficients can be calculated as ai = (ui ·v).

Using this, we can find the matrix D′ of the linear map defined by our original
matrix D in this new basis. By definition, if d′ij are the entries of D′, then

Dui =
N∑
j=1

d′ijuj

and so

d′ij = uj ·Dui = uᵀjDui.

Since D is symmetric, uᵀjDui = uᵀiDuj and so d′ij = d′ji. In other words, the
matrix D′ is still symmetric. Furthermore,

d′Ni = ui ·DuN = ui · λuN = λ(ui · uN )

since uN = vN . Since the ui are an orthonormal basis, we see that d′iN = 0
unless i = N , and d′NN = λ.

In other words, the matrix D′ has a block form:

D′ =


∗ ∗ · · · ∗ 0
...

... . . . ...
...

∗ ∗ · · · ∗ 0
0 0 · · · 0 λ


and the block denoted by ∗’s is symmetric. If we call that block D∗, the inductive
hypothesis tells us that the symmetric matrix D∗ is diagonalizable, so it has a
basis of eigenvectors u′1, . . . , u′N−1 with eigenvalues λ1, . . . , λN−1; this gives us a
basis for the subspace of RN spanned by u1, . . . , uN−1 which, together with uN
gives us a basis of RN consisting of eigenvectors of D.

This finishes the proof of Property 2.

For property 3, compute

vᵀDw = λ′(v · w) = wᵀDv = λ(w · v).

Since λ 6= λ′, we must have v · w = 0.
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For property 4, if the eigenvalues are all distinct, this is a consequence of property
2 – you have N eigenvectors, scaled to length 1, for different eigenvalues, and by 2
they are orthogonal. So the only complication is the case where some eigenvalues
are repeated. If λ occurs r times, then you have r linearly independent vectors
u1, . . . , ur that span the λ eigenspace. The Gram-Schmidt process allows you
to construct an orthonormal set that spans this eigenspace, and while this
orthonormal set isn’t unique, any one of them will do.

For property 5, let ei be the column vector that is zero except for a 1 in position
i. The product eᵀjDei = dij . Let’s write ei and ej in terms of the orthonormal
basis u1, . . . uN :

ei =
N∑
k=1

(ei · uk)uk and ej =
N∑
k=1

(ej · uk)uk.

Using this expansion, we compute eᵀjDei in a more complicated way:

eᵀjDei =
N∑
r=1

N∑
s=1

(ej · ur)(ei · us)(uᵀrDus).

But uᵀrDus = λs(ur · us) = 0 unless r = s, in which case it equals λr, so

eᵀjDei =
N∑
r=1

λr(ej · ur)(ei · ur).

On the other hand,

P ᵀei =


(ei · u1)
(ei · u2)

...
(ei · uN )


and

ΛP ᵀei =


λ1(ei · ui)
λ2(ei · u2)

...
λN (ei · uN )


Therefore the i, j entry of PΛP ᵀ is

(eᵀjP )Λ(P ᵀej) =
N∑
r=1

λr(ei · ur)(ej · ur) = dij

so the two matrices D and PΛP ᵀ are in fact equal.

Exercises:

1. Prove the rest of the first lemma in section 1.4.2.

2. Prove the Gram-Schmidt Process has the claimed properties in section 1.5.1.
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