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Preface

These notes are being developed for the UConn Math Department’s undergraduate course on the
Mathematics of Machine Learning, Math 3180.

This is a (very) rough draft. Please let the author know if you have questions or find mistakes.
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1 Linear Regression

1.1 Introduction

Suppose that we are trying to study two quantities 𝑥 and 𝑦 that we suspect are related – at least
approximately – by a linear equation 𝑦 = 𝑎𝑥 + 𝑏. Sometimes this linear relationship is predicted
by theoretical considerations, and sometimes it is just an empirical hypothesis.

For example, if we are trying to determine the velocity of an object travelling towards us at constant
speed, and we measure measure the distances 𝑑1, 𝑑2, … , 𝑑𝑛 between us and the object at a series
of times 𝑡1, 𝑡2, … , 𝑡𝑛, then since “distance equals rate times time” we have a theoretical foundation
for the assumption that 𝑑 = 𝑟𝑡 + 𝑏 for some constants 𝑟 and 𝑏. On the other hand, because of
unavoidable experimental errors, we can’t expect that this relationship will hold exactly for the
observed data; instead, we likely get a graph like that shown in Figure 1.1. We’ve drawn a line on
the plot that seems to capture the true slope (and hence velocity) of the object.

Figure 1.1: Physics Experiment

On the other hand, we might look at a graph such as Figure 1.2, which plots the gas mileage of
various car models against their engine size (displacement), and observe a general trend in which
bigger engines get lower mileage. In this situation we could ask for the best line of the form
𝑦 = 𝑚𝑥 + 𝑏 that captures this relationship and use that to make general conclusions without
necessarily having an underlying theory.
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1 Linear Regression

Figure 1.2: MPG vs Displacement ( [1] )

1.2 Least Squares (via Calculus)

In either of the two cases above, the question we face is to determine the line 𝑦 = 𝑚𝑥+𝑏 that “best
fits” the data {(𝑥𝑖, 𝑦𝑖)𝑁

𝑖=1}. The classic approach is to determine the equation of a line 𝑦 = 𝑚𝑥 + 𝑏
that minimizes the “mean squared error”:

𝑀𝑆𝐸(𝑚, 𝑏) = 1
𝑁

𝑁
∑
𝑖=1

(𝑦𝑖 − 𝑚𝑥𝑖 − 𝑏)2

It’s worth emphasizing that the 𝑀𝑆𝐸 is a function of two variables – the slope 𝑚 and the intercept 𝑏
– and that the data points {(𝑥𝑖, 𝑦𝑖)} are constants for these purposes. Furthermore, it’s a quadratic
function in those two variables. Since our goal is to find 𝑚 and 𝑏 that minimize the 𝑀𝑆𝐸, we have
a Calculus problem that we can solve by taking partial derivatives and setting them to zero.

To simplify the notation, let’s abbreviate 𝑀𝑆𝐸 by 𝐸.

𝜕𝐸
𝜕𝑚 = 1

𝑁
𝑁

∑
1

−2𝑥𝑖(𝑦𝑖 − 𝑚𝑥𝑖 − 𝑏)

𝜕𝐸
𝜕𝑏 = 1

𝑁
𝑁

∑
1

−2(𝑦𝑖 − 𝑚𝑥𝑖 − 𝑏)

We set these two partial derivatives to zero, so we can drop the −2 and regroup the sums to obtain
two equations in two unknowns (we keep the 1

𝑁 because it is illuminating in the final result):
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1.3 Least Squares (via Geometry)

1
𝑁 (

𝑁
∑
𝑖=1

𝑥2
𝑖 )𝑚+ 1

𝑁 (
𝑁

∑
𝑖=1

𝑥𝑖)𝑏 = 1
𝑁

𝑁
∑
𝑖=1

𝑥𝑖𝑦𝑖

1
𝑁 (

𝑁
∑
𝑖=1

𝑥𝑖)𝑚+ 𝑏 = 1
𝑁

𝑁
∑
𝑖=1

𝑦𝑖

(1.1)

In these equations, notice that 1
𝑁 ∑𝑁

𝑖=1 𝑥𝑖 is the average (or mean) value of the 𝑥𝑖. Let’s call this 𝑥.
Similarly, 1

𝑁 ∑𝑁
𝑖=1 𝑦𝑖 is the mean of the 𝑦𝑖, and we’ll call it 𝑦. If we further simplify the notation

and write 𝑆𝑥𝑥 for 1
𝑁 ∑𝑁

𝑖=1 𝑥2
𝑖 and 𝑆𝑥𝑦 for 1

𝑁 ∑𝑁
𝑖=1 𝑥𝑖𝑦𝑖 then we can write down a solution to this

system using Cramer’s rule:

𝑚 = 𝑆𝑥𝑦 − 𝑥𝑦
𝑆𝑥𝑥 − 𝑥2

𝑏 = 𝑆𝑥𝑥𝑦 − 𝑆𝑥𝑦𝑥
𝑆𝑥𝑥 − 𝑥2

(1.2)

where we must have 𝑆𝑥𝑥 − 𝑥2 ≠ 0.

1.2.1 Exercises

1. Verify that Equation 1.2 is in fact the solution to the system in Equation 1.1 .

2. Suppose that 𝑆𝑥𝑥 − 𝑥2 = 0. What does that mean about the 𝑥𝑖? Does it make sense that
the problem of finding the “line of best fit” fails in this case?

1.3 Least Squares (via Geometry)

In our discussion above, we thought about our data as consisting of 𝑁 pairs (𝑥𝑖, 𝑦𝑖) corresponding
to 𝑁 points in the 𝑥𝑦-plane R2. Now let’s turn that picture “on its side”, and instead think of our
data as consisting of two points in R𝑁 :

𝑋 =
⎡
⎢⎢
⎣

𝑥1
𝑥2
⋮

𝑥𝑛

⎤
⎥⎥
⎦

and 𝑌 =
⎡
⎢⎢
⎣

𝑦1
𝑦2
⋮

𝑦𝑛

⎤
⎥⎥
⎦

Let’s also introduce one other vector

𝐸 =
⎡
⎢⎢
⎣

1
1
⋮
1

⎤
⎥⎥
⎦

.
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1 Linear Regression

First, let’s assume that 𝐸 and 𝑋 are linearly independent. If not, then 𝑋 is a constant vector
(why?) which we already know is a problem from Section 1.2, Exercise 2. Therefore 𝐸 and 𝑋 span
a plane in R𝑁 .

Figure 1.3: Distance to A Plane

Now if our data points (𝑥𝑖, 𝑦𝑖) all did lie on a line 𝑦 = 𝑚𝑥 + 𝑏, then the three vectors 𝑋, 𝑌 , and
𝐸 would be linearly dependent:

𝑌 = 𝑚𝑋 + 𝑏𝐸.

Since our data is only approximately linear, that’s not the case. So instead we look for an approx-
imate solution. One way to phrase that is to ask:

What is the point ̂𝑌 in the plane 𝐻 spanned by 𝑋 and 𝐸 in R𝑁 which is closest to 𝑌 ?

If we knew this point ̂𝑌 , then since it lies in 𝐻 we would have ̂𝑌 = 𝑚𝑋 + 𝑏𝐸 and the coefficients
𝑚 and 𝑏 would be a candidate for defining a line of best fit 𝑦 = 𝑚𝑥 + 𝑏. Finding the point in a
plane closest to another point in R𝑁 is a geometry problem that we can solve.

Proposition: The point ̂𝑌 in the plane spanned by 𝑋 and 𝐸 is the point such that the vector
𝑌 − ̂𝑌 is perpendicular to 𝐻.

Proof: See Figure 1.3 for an illustration – perhaps you are already convinced by this, but let’s be
careful. ̂𝑌 = 𝑚𝑋 + 𝑏𝐸 such that

𝐷 = ‖𝑌 − ̂𝑌 ‖2 = ‖𝑌 − 𝑚𝑋 − 𝑏𝐸‖2

is minimal. Using some vector calculus, we have
𝜕𝐷
𝜕𝑚 = 𝜕

𝜕𝑚(𝑌 − 𝑚𝑋 − 𝑏𝐸) ⋅ (𝑌 − 𝑚𝑋 − 𝑏𝐸) = −2(𝑌 − 𝑚𝑋 − 𝑏𝐸) ⋅ 𝑋

6



1.4 The Multivariate Case (Calculus)

and
𝜕𝐷
𝜕𝑏 = 𝜕

𝜕𝑏(𝑌 − 𝑚𝑋 − 𝑏𝐸) ⋅ (𝑌 − 𝑚𝑋 − 𝑏𝐸) = −2(𝑌 − 𝑚𝑋 − 𝑏𝐸) ⋅ 𝐸.

So both derivatives are zero exactly when ̂𝑌 = (𝑌 − 𝑚𝑋 − 𝑏𝐸) is orthogonal to both 𝑋 and 𝐸,
and therefore every vector in 𝐻.

We also obtain equations for 𝑚 and 𝑏 just as in our first look at this problem.

𝑚(𝑋 ⋅ 𝐸) + 𝑏(𝐸 ⋅ 𝐸) = (𝑌 ⋅ 𝐸)
𝑚(𝑋 ⋅ 𝑋) + 𝑏(𝐸 ⋅ 𝑋) = (𝑌 ⋅ 𝑋) (1.3)

We leave it is an exercise below to check that these are the same equations that we obtained in
Equation 1.2.

1.3.1 Exercises

1. Verify that Equation 1.2 and Equation 1.3 are equivalent.

1.4 The Multivariate Case (Calculus)

Having worked through the problem of finding a “line of best fit” from two points of view, let’s look
at a more general problem. We looked above at a scatterplot showing the relationship between
gas mileage and engine size (displacement). There are other factors that might contribute to gas
mileage that we want to consider as well – for example:

• a car that is heavy compared to its engine size may get worse mileage
• a sports car with a drive train that gives fast acceleration as compared to a car with a

transmission designed for long trips may have different mileage for the same engine size.

Suppose we wish to use engine displacement, vehicle weight, and acceleration all together to predict
mileage. Instead of looking points (𝑥𝑖, 𝑦𝑖) where 𝑥𝑖 is the displacement of the 𝑖𝑡ℎ car model and
we try to predict a value 𝑦 from a corresponding 𝑥 as 𝑦 = 𝑚𝑥 + 𝑏 – let’s look at a situation in
which our measured value 𝑦 depends on multiple variables – say displacement 𝑑, weight 𝑤, and
acceleration 𝑎 with 𝑘 = 3 – and we are trying to find the best linear equation

𝑦 = 𝑚1𝑑 + 𝑚2𝑤 + 𝑚3𝑎 + 𝑏 (1.4)

But to handle this situation more generally we need to adopt a convention that will allow us to
use indexed variables instead of 𝑑, 𝑤, and 𝑎. We will use the tidy data convention.

Tidy Data: A dataset is tidy if it consists of values 𝑥𝑖𝑗 for 𝑖 = 1, … , 𝑁 and 𝑗 = 1, … , 𝑘 so that:

• the row index corresponds to a sample – a set of measurements from a single event or item;

7



1 Linear Regression

• the column index corresponds to a feature – a particular property measured for all of the
events or items.

In our case,

• the samples are the different types of car models,
• the features are the properties of those car models.

For us, 𝑁 is the number of different types of cars, and 𝑘 is the number of properties we are
considering. Since we are looking at displacement, weight, and acceleration, we have 𝑘 = 3.
So the “independent variables” for a set of data that consists of 𝑁 samples, and 𝑘 measurements
for each sample, can be represented by a 𝑁 × 𝑘 matrix

𝑋 =
⎛⎜⎜⎜⎜
⎝

𝑥11 𝑥12 ⋯ 𝑥1𝑘
𝑥21 𝑥22 ⋯ 𝑥2𝑘

⋮ ⋮ ⋱ ⋮
𝑥𝑁1 𝑥𝑘2 ⋯ 𝑥𝑁𝑘

⎞⎟⎟⎟⎟
⎠

and the measured dependent variables 𝑌 are a column vector

𝑌 =
⎡
⎢⎢
⎣

𝑦1
𝑦2
⋮

𝑦𝑁

⎤
⎥⎥
⎦

.

If 𝑚1, … , 𝑚𝑘 are “slopes” associated with these properties in Equation 1.4, and 𝑏 is the “intercept”,
then the predicted value ̂𝑌 is given by a matrix equation

̂𝑌 = 𝑋
⎡
⎢⎢
⎣

𝑚1
𝑚2
⋯

𝑚𝑘

⎤
⎥⎥
⎦

+
⎡
⎢⎢
⎣

1
1
⋯
1

⎤
⎥⎥
⎦

𝑏

and our goal is to choose these parameters 𝑚𝑖 and 𝑏 to make the mean squared error:

𝑀𝑆𝐸(𝑚1, … , 𝑚𝑘, 𝑏) = ‖𝑌 − ̂𝑌 ‖2 =
𝑁

∑
𝑖=1

(𝑦𝑖 −
𝑘

∑
𝑗=1

𝑥𝑖𝑗𝑚𝑗 − 𝑏)2.

Here we are summing over the 𝑁 different car models, and for each model taking the squared
difference between the true mileage 𝑦𝑖 and the “predicted” mileage ∑𝑘

𝑗=1 𝑥𝑖𝑗𝑚𝑗 + 𝑏. We wish to
minimize this MSE.

Let’s make one more simplification. The intercept variable 𝑏 is annoying because it requires separate
treatment from the 𝑚𝑖. But we can use a trick to eliminate the need for special treatment. Let’s
add a new feature to our data matrix (a new column) that has the constant value 1.

8



1.4 The Multivariate Case (Calculus)

𝑋 =
⎛⎜⎜⎜⎜
⎝

𝑥11 𝑥12 ⋯ 𝑥1𝑘 1
𝑥21 𝑥22 ⋯ 𝑥2𝑘 1

⋮ ⋮ ⋱ ⋮ 1
𝑥𝑁1 𝑥𝑘2 ⋯ 𝑥𝑁𝑘 1

⎞⎟⎟⎟⎟
⎠

Now our data matrix 𝑋 is 𝑁 × (𝑘 + 1) and we can put our “intercept” 𝑏 = 𝑚𝑘+1 into our vector
of “slopes” 𝑚1, … , 𝑚𝑘, 𝑚𝑘+1:

̂𝑌 = 𝑋
⎡
⎢
⎢
⎢
⎣

𝑚1
𝑚2
⋯

𝑚𝑘
𝑚𝑘+1

⎤
⎥
⎥
⎥
⎦

and our MSE becomes

𝑀𝑆𝐸(𝑀) = ‖𝑌 − 𝑋𝑀‖2

where

𝑀 =
⎡
⎢
⎢
⎢
⎣

𝑚1
𝑚2
⋯

𝑚𝑘
𝑚𝑘+1

⎤
⎥
⎥
⎥
⎦

.

Remark: Later on (see {Section 1.6}) we will see that if we “center” our features about their mean,
by subtracting the average value of each column of 𝑋 from that column; and we also subtract the
average value of 𝑌 from the entries of 𝑌 , then the 𝑏 that emerges from the least squares fit is zero.
As a result, instead of adding a column of 1’s, you can change coordinates to center each feature
about its mean, and keep your 𝑋 matrix 𝑁 × 𝑘.

The Calculus approach to minimizing the 𝑀𝑆𝐸 is to take its partial derivatives with respect to
the 𝑚𝑖 and set them to zero. Let’s first work out the derivatives in a nice form for later.

Proposition: The gradient of 𝑀𝑆𝐸(𝑀) = 𝐸 is given by

∇𝐸 =
⎡
⎢⎢⎢
⎣

𝜕
𝜕𝑀1

𝐸
𝜕

𝜕𝑀2
𝐸

⋮
𝜕

𝜕𝑚𝑀+1
𝐸

⎤
⎥⎥⎥
⎦

= −2𝑋⊺𝑌 + 2𝑋⊺𝑋𝑀 (1.5)

where 𝑋⊺ is the transpose of 𝑋.

9



1 Linear Regression

Proof: First, remember that the 𝑖𝑗 entry of 𝑋⊺ is the 𝑗𝑖 entry of 𝑋. Also, we will use the notation
𝑋[𝑗, ∶] to mean the 𝑗𝑡ℎ row of 𝑋 and 𝑋[∶, 𝑖] to mean the 𝑖𝑡ℎ column of 𝑋. (This is copied from the
Python programming language; the ‘:’ means that index runs over all possibilities).

Since

𝐸 =
𝑁

∑
𝑗=1

(𝑌𝑗 −
𝑘+1
∑
𝑠=1

𝑋𝑗𝑠𝑀𝑠)2

we compute:
𝜕

𝜕𝑀𝑡
𝐸 = −2

𝑁
∑
𝑗=1

𝑋𝑗𝑡(𝑌𝑗 −
𝑘+1
∑
𝑠=1

𝑋𝑗𝑠𝑀𝑠)

= −2(
𝑁

∑
𝑗=1

𝑌𝑗𝑋𝑗𝑡 −
𝑁

∑
𝑗=1

𝑘+1
∑
𝑠=1

𝑋𝑗𝑡𝑋𝑗𝑠𝑀𝑠)

= −2(
𝑁

∑
𝑗=1

𝑋⊺
𝑡𝑗𝑌𝑗 −

𝑁
∑
𝑗=1

𝑘+1
∑
𝑠=1

𝑋⊺
𝑡𝑗𝑋𝑗𝑠𝑀𝑠)

= −2(𝑋⊺[𝑡, ∶]𝑌 −
𝑘+1
∑
𝑠=1

𝑁
∑
𝑗=1

𝑋⊺
𝑡𝑗𝑋𝑗𝑠𝑀𝑠)

= −2(𝑋⊺[𝑡, ∶]𝑌 −
𝑘+1
∑
𝑠=1

(𝑋⊺𝑋)𝑡𝑠𝑀𝑠)

= −2[𝑋⊺[𝑡, ∶]𝑌 − (𝑋⊺𝑋](𝑡, ∶)𝑀)

(1.6)

Stacking up the different rows to make 𝐸 yields the desired formula.

Proposition: Assume that 𝐷 = 𝑋⊺𝑋 is invertible (notice that it is a (𝑘 + 1) × (𝑘 + 1) square
matrix so this makes sense). The solution 𝑀 to the multivariate least squares problem is

𝑀 = 𝐷−1𝑋⊺𝑌 (1.7)

and the “predicted value” ̂𝑌 for 𝑌 is

̂𝑌 = 𝑋𝐷−1𝑋⊺𝑌 . (1.8)

1.5 The Multivariate Case (Geometry)

Let’s look more closely at the equation obtained by setting the gradient of the error, Equation 1.5,
to zero. Remember that 𝑀 is the unknown vector in this equation, everything else is known:

𝑋⊺𝑌 = 𝑋⊺𝑋𝑀

Here is how to think about this:
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1.5 The Multivariate Case (Geometry)

1. As 𝑀 varies, the 𝑁 × 1 matrix 𝑋𝑀 varies over the space spanned by the columns of the
matrix 𝑋. So as 𝑀 varies 𝑋𝑀 is a general element of the subspace 𝐻 of 𝑅𝑁 spanned by the
𝑘 + 1 columns of 𝑋.

2. The product 𝑋⊺𝑋𝑀 is a (𝑘 + 1) × 1 matrix. Each entry is the dot product of the general
element of 𝐻 with one of the 𝑘 + 1 basis vectors of 𝐻.

3. The product 𝑋⊺𝑌 is a (𝑘 + 1) × 1 matrix whose entries are the dot product of the basis
vectors of 𝐻 with 𝑌 .

Therefore, this equation asks for us to find 𝑀 so that the vector 𝑋𝑀 in 𝐻 has the same dot
products with the basis vectors of 𝐻 as 𝑌 does. The condition

𝑋⊺ ⋅ (𝑌 − 𝑋𝑀) = 0

says that 𝑌 − 𝑋𝑀 is orthogonal to 𝐻. This argument establishes the following proposition.

Proposition: Just as in the simple one-dimensional case, the predicted value ̂𝑌 of the least squares
problem is the point in 𝐻 closest to 𝑌 – or in other words the point ̂𝑌 in 𝐻 such that 𝑌 − ̂𝑌 is
perpendicular to 𝐻.

1.5.1 Orthogonal Projection

Recall that we introduced the notation 𝐷 = 𝑋⊺𝑋, and let’s assume, for now, that 𝐷 is an invertible
matrix. We have the formula (see Equation 1.8):

̂𝑌 = 𝑋𝐷−1𝑋⊺𝑌 .

Proposition: The matrix 𝑃 = 𝑋𝐷−1𝑋⊺ is an 𝑁 × 𝑁 matrix called the orthogonal projection
operator onto the subspace 𝐻 spanned by the columns of 𝑋. It has the following properties:

• 𝑃𝑌 belongs to the subspace 𝐻 for any 𝑌 ∈ R𝑁 .
• (𝑌 − 𝑃 𝑌 ) is orthogonal to 𝐻.
• 𝑃 ∗ 𝑃 = 𝑃 .

Proof: First of all, 𝑃 𝑌 = 𝑋𝐷−1𝑋⊺𝑌 so 𝑃𝑌 is a linear combination of the columns of 𝑋 and is
therefore an element of 𝐻. Next, we can compute the dot product of 𝑃𝑌 against a basis of 𝐻 by
computing

𝑋⊺𝑃𝑌 = 𝑋⊺𝑋𝐷−1𝑋⊺𝑌 = 𝑋⊺𝑌

since 𝑋⊺𝑋 = 𝐷. This equation means that 𝑋⊺(𝑌 − 𝑃𝑌 ) = 0 which tells us that 𝑌 − 𝑃𝑌 has dot
product zero with a basis for 𝐻. Finally,

𝑃𝑃 = 𝑋𝐷−1𝑋⊺𝑋𝐷−1𝑋⊺ = 𝑋𝐷−1𝑋⊺ = 𝑃.
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1 Linear Regression

It should be clear from the above discussion that the matrix 𝐷 = 𝑋⊺𝑋 plays an important role in
the study of this problem. In particular it must be invertible or our analysis above breaks down.
In the next section we will look more closely at this matrix and what information it encodes about
our data.

1.6 Centered coordinates

Recall from last section that the matrix 𝐷 = 𝑋⊺𝑋 is of central importance to the study of the
multivariate least squares problem. Let’s look at it more closely.

Lemma: The 𝑖, 𝑗 entry of 𝐷 is the dot product

𝐷𝑖𝑗 = 𝑋[∶, 𝑖] ⋅ 𝑋[∶, 𝑗]

of the 𝑖𝑡ℎ and 𝑗𝑡ℎ columns of 𝑋.

Proof: In the matrix multiplication 𝑋⊺𝑋, the 𝑖𝑡ℎ row of 𝑋⊺ gets “dotted” with the 𝑗𝑡ℎ column
of 𝑋 to product the 𝑖, 𝑗 entry. But the 𝑖𝑡ℎ row of 𝑋⊺ is the 𝑖𝑡ℎ column of 𝑋, as asserted in the
statement of the lemma.

A crucial point in our construction above relied on the matrix 𝐷 being invertible. The following
Lemma shows that 𝐷 fails to be invertible only when the different features (the columns of 𝑋) are
linearly dependent.

Lemma: 𝐷 is not invertible if and only if the columns of 𝑋 are linearly dependent.

Proof: If the columns of 𝑋 are linearly dependent, then there is a nonzero vector 𝑚 so that
𝑋𝑚 = 0. In that case clearly 𝐷𝑚 = 𝑋⊺𝑋𝑚 = 0 so 𝐷 is not invertible. Suppose 𝐷 is not invertible.
Then there is a nonzero vector 𝑚 with 𝐷𝑚 = 𝑋⊺𝑋𝑚 = 0. This means that the vector 𝑋𝑚 is
orthogonal to all of the columns of 𝑋. Since 𝑋𝑚 belongs to the span 𝐻 of the columns of 𝑋, if it
is orthogonal to 𝐻 it must be zero.

In fact, the matrix 𝐷 captures some important statistical measures of our data, but to see this
clearly we need to make a slight change of basis. First recall that 𝑋[∶, 𝑘 + 1] is our column of all
1, added to handle the intercept. As a result, the dot product 𝑋[∶, 𝑖] ⋅ 𝑋[∶, 𝑘 + 1] is the sum of the
entries in the 𝑖𝑡ℎ column, and so if we let 𝜇𝑖 denote the average value of the entries in column 𝑖,
we have

𝜇𝑖 = 1
𝑁 (𝑋[∶, 𝑖] ⋅ 𝑋[∶, 𝑘 + 1])

Now change the matrix 𝑋 by elementary column operations to obtain a new data matrix 𝑋0 by
setting

𝑋0[∶, 𝑖] = 𝑋[∶, 𝑖] − 1
𝑁 (𝑋[∶, 𝑖] ⋅ 𝑋[∶, 𝑘 + 1])𝑋[∶, 𝑘 + 1] = 𝑋[∶, 𝑖] − 𝜇𝑖𝑋[∶, 𝑘 + 1]

for 𝑖 = 1, … , 𝑘.
In terms of the original data, we are changing the measurement scale of the data so that each
feature has average value zero, and the subspace 𝐻 spanned by the columns of 𝑋0 is the same as
that spanned by the columns of 𝑋. Using 𝑋0 instead of 𝑋 for our least squares problem, we get
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1.6 Centered coordinates

̂𝑌 = 𝑋0𝐷−1
0 𝑋⊺

0 𝑌

and

𝑀0 = 𝐷−1
0 𝑋⊺

0 𝑌

where 𝐷0 = 𝑋⊺
0 𝑋0.

Proposition: The matrix 𝐷0 has a block form. Its upper left block is a 𝑘 × 𝑘 symmetric block
with entries

(𝐷0)𝑖𝑗 = (𝑋[∶, 𝑖] − 𝜇𝑖𝑋[∶, 𝑘 + 1]) ⋅ (𝑋[∶, 𝑗] − 𝜇𝑗𝑋[∶, 𝑘 + 1])
Its (𝑘 + 1)𝑠𝑡 row and column are all zero, except for the (𝑘 + 1), (𝑘 + 1) entry, which is 𝑁 .

Proof: This follows from the fact that the last row and column entries are (for 𝑖 ≠ 𝑘 + 1):

(𝑋[∶, 𝑖] − 𝜇𝑖𝑋[∶, 𝑘 + 1]) ⋅ 𝑋[∶, 𝑘 + 1] = (𝑋[∶, 𝑖] ⋅ 𝑋[∶, 𝑘 + 1]) − 𝑁𝜇𝑖 = 0

and for 𝑖 = 𝑘 + 1 we have 𝑋[∶, 𝑘 + 1] ⋅ 𝑋[∶, 𝑘 + 1] = 𝑁 since that column is just 𝑁 1’s.
Proposition: If the 𝑥 coordinates (the features) are centered so that they have mean zero, then
the intercept 𝑏 is

𝑌 = 1
𝑁 ∑ 𝑦𝑖.

Proof: By centering the coordinates, we replace the matrix 𝑋 by 𝑋0 and 𝐷 by 𝐷0. and we are
trying to minimize ‖𝑌 − 𝑋0𝑀0‖2. Use the formula from Equation 1.7 to see that

𝑀0 = 𝐷−1
0 𝑋⊺

0 𝑌 .

The 𝑏 value we are interested in is the last entry 𝑚𝑘+1 in 𝑀0. From the block form of 𝐷0, we know
that 𝐷−1

0 has bottom row and last column zero except for 1/𝑁 in position (𝑘 + 1) × (𝑘 + 1). Also
𝑋⊺

0 has last row consisting entirely of 1. So the bottom entry of 𝑋⊺
0 𝑌 is ∑𝑁

𝑖=1 𝑦𝑖, and the bottom
entry 𝑏 of 𝐷−1

0 𝑋⊺
0 𝑌 is

𝜇𝑌 = 1
𝑁

𝑁
∑
𝑖=1

𝑦𝑖.

as claimed.

Corollary: If we make a further change of coordinates to define

𝑌0 = 𝑌 − 𝜇𝑌
⎡
⎢⎢
⎣

1
1
⋮
1

⎤
⎥⎥
⎦

then the associated 𝑏 is zero. As a result we can forget about the extra column of 1′𝑠 that we
added to 𝑋 to account for it and reduce the dimension of our entire problem by 1.
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1 Linear Regression

Just to recap, if we center our data so that 𝜇𝑌 = 0 and 𝜇𝑖 = 0 for 𝑖 = 1, … , 𝑘, then the least
squares problem reduces to minimizing

𝐸(𝑀) = ‖𝑌 − 𝑋𝑀‖2

where 𝑋 is the 𝑁 × 𝑘 matrix with 𝑗𝑡ℎ row (𝑥𝑗1, 𝑥𝑗2, … , 𝑥𝑗𝑘) for 𝑗 = 1, … , 𝑁 and the solutions are
as given in Equation 1.7 and Equation 1.8.

1.7 Caveats about Linear Regression

1.7.1 Basic considerations

Reflecting on our long discussion up to this point, we should take note of some of the potential
pitfalls that lurk in the use of linear regression.

1. When we apply linear regression, we are explicitly assuming that the variable 𝑌 is associated
to 𝑋 via linear equations. This is a big assumption!

2. When we use multilinear regression, we are assuming that changes in the different features
have independent effects on the target variable 𝑦. In other words, suppose that 𝑦 = 𝑎𝑥1 +𝑏𝑥2.
Then an increase of 𝑥1 by 1 increases 𝑦 by 𝑎, and an increase of 𝑥2 by 1 increases 𝑦 by 𝑏.
These effects are independent of one another and combine to yield an increase of 𝑎 + 𝑏.

3. We showed in our discussion above that linear regression problem has a solution when the
matrix 𝐷 = 𝑋⊺𝑋 is invertible, and this happens when the columns of 𝐷 are linearly inde-
pendent. When working with real data, which is messy, we could have a situation in which
the features we are studying are, in fact, dependent – but because of measurement error, the
samples that we collected aren’t. In this case, the matrix 𝐷 will be “close” to being non-
invertible, although formally still invertible. In this case, computing 𝐷−1 leads to numerical
instability and the solution we obtain is very unreliable.

1.7.2 Simpson’s Effect

Simpson’s effect is a famous phenomenon that illustrates that linear regression can be very mis-
leading in some circumstances. It is often a product of “pooling” results from multiple experiments.
Suppose, for example, that we are studying the relationship between a certain measure of blood
chemistry and an individual’s weight gain or less on a particular diet. We do our experiments in
three labs, the blue, green, and red labs. Each lab obtains similar results – higher levels of the
blood marker correspond to greater weight gain, with a regression line of slope around 1. However,
because of differences in the population that each lab is studying, some populations are more sus-
ceptible to weight gain and so the red lab sees a mean increase of almost 9 lbs while the blue lab
sees a weight gain of only 3 lbs on average.

The three groups of scientists pool their results to get a larger sample size and do a new regression.
Surprise! Now the regression line has slope −1.6 and increasing amounts of the marker seem to
lead to less weight gain!
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1.7 Caveats about Linear Regression

This is called Simpson’s effect, or Simpson’s paradox, and it shows that unknown factors (con-
founding factors) may cause linear regression to yield misleading results. This is particularly true
when data from experiments conducted under different conditions is combined; in this case, the
differences in experimental setting, called batch effects, can throw off the analysis very dramatically.
See Figure 1.4 .

Figure 1.4: Simpson’s Effect

1.7.3 Exercises

1. When proving that 𝐷 is invertible if and only if the columns of 𝑋 are linearly independent,
we argued that if 𝑋⊺𝑋𝑚 = 0 for a nonzero vector 𝑚, then 𝑋𝑚 is orthogonal to the span
of the columns of 𝑋, and is also an element of that span, and is therefore zero. Provide the
details: show that if 𝐻 is a subspace of R𝑁 , and 𝑥 is a vector in 𝐻 such that 𝑥 ⋅ ℎ = 0 for all
ℎ ∈ 𝐻, then 𝑥 = 0.
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2 Principal Component Analysis

2.1 Introduction

Suppose that, as usual, we begin with a collection of measurements of different features for a group
of samples. Some of these measurements will tell us quite a bit about the dif mergefference among
our samples, while others may contain relatively little information. For example, if we are analyzing
the effect of a certain weight loss regimen on a group of people, the age and weight of the subjects
may have a great deal of influence on how successful the regimen is, while their blood pressure
might not. One way to help identify which features are more significant is to ask whether or not
the feature varies a lot among the different samples. If nearly all the measurements of a feature
are the same, it can’t have much power in distinguishing the samples, while if the measurements
vary a great deal then that feature has a chance to contain useful information.

In this section we will discuss a way to measure the variability of measurements and then introduce
principal component analysis (PCA). PCA is a method for finding which linear combinations of
measurements have the greatest variability and therefore might contain the most information. It
also allows us to identify combinations of measurements that don’t vary much at all. Combining this
information, we can sometimes replace our original system of features with a smaller set that still
captures most of the interesting information in our data, and thereby find hidden characteristics
of the data and simplify our analysis a great deal.

2.2 Variance and Covariance

2.2.1 Variance

Suppose that we have a collection of measurements (𝑥1, … , 𝑥𝑁) of a particular feature 𝑋. For
example, 𝑥𝑖 might be the initial weight of the 𝑖𝑡ℎ participant in our weight loss study. The mean
of the values (𝑥1, … , 𝑥𝑁) is

𝜇𝑋 = 1
𝑁

𝑁
∑
𝑖=1

𝑥𝑖.

The simplest measure of the variability of the data is called its variance.

Definition: The (sample) variance of the data 𝑥1, … , 𝑥𝑁 is
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2 Principal Component Analysis

𝜎2
𝑋 = 1

𝑁
𝑁

∑
𝑖=1

(𝑥𝑖 − 𝜇𝑋)2 = 1
𝑁 (

𝑁
∑
𝑖=1

𝑥2
𝑖 ) − 𝜇2

𝑋 (2.1)

The square root of the variance is called the standard deviation.

As we see from the formula, the variance is a measure of how ‘spread out’ the data is from the
mean.

Recall that in our discussion of linear regression we thought of our set of measurements 𝑥1, … , 𝑥𝑁
as a vector – it’s one of the columns of our data matrix. From that point of view, the variance has a
geometric interpretation – it is 1

𝑁 times the square of the distance from the point 𝑋 = (𝑥1, … , 𝑥𝑁)
to the point 𝜇𝑋(1, 1, … , 1) = 𝜇𝑋𝐸:

𝜎2
𝑋 = 1

𝑁 (𝑋 − 𝜇𝑋𝐸) ⋅ (𝑋 − 𝜇𝑋𝐸) = 1
𝑁 ‖𝑋 − 𝜇𝑋𝐸‖2. (2.2)

2.2.2 Covariance

The variance measures the dispersion of measures of a single feature. Often, we have measurements
of multiple features and we might want to know something about how two features are related. The
covariance is a measure of whether two features tend to be related, in the sense that when one
increases, the other one increases; or when one increases, the other one decreases.

Definition: Given measurements (𝑥1, … , 𝑥𝑁) and (𝑦1, … , 𝑦𝑁) of two features 𝑋 and 𝑌 , the co-
variance of 𝑋 and 𝑌 is

𝜎𝑋𝑌 = 1
𝑁

𝑁
∑
𝑖=1

(𝑥𝑖 − 𝜇𝑋)(𝑦𝑖 − 𝜇𝑌 ) (2.3)

There is a nice geometric interpretation of this, as well, in terms of the dot product. If 𝑋 =
(𝑥1, … , 𝑥𝑁) and 𝑌 = (𝑦1 … , 𝑦𝑁) then

𝜎𝑋𝑌 = 1
𝑁 ((𝑋 − 𝜇𝑋𝐸) ⋅ (𝑌 − 𝜇𝑌 𝐸)).

From this point of view, we can see that 𝜎𝑋𝑌 is positive if the 𝑋−𝜇𝑋𝐸 and 𝑌 −𝜇𝑌 𝐸 vectors “point
roughly in the same direction” and its negative if they “point roughly in the opposite direction.”
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2.2 Variance and Covariance

2.2.3 Correlation

One problem with interpreting the variance and covariance is that we don’t have a scale – for
example, if 𝜎𝑋𝑌 is large and positive, then we’d like to say that 𝑋 and 𝑌 are closely related, but
it could be just that the entries of 𝑋 − 𝜇𝑋𝐸 and 𝑌 − 𝜇𝑌 𝐸 are large. Here, though, we can really
take advantage of the geometric interpretation. Recall that the dot product of two vectors satisfies
the formula

𝑎 ⋅ 𝑏 = ‖𝑎‖‖𝑏‖ cos(𝜃)

where 𝜃 is the angle between 𝑎 and 𝑏. So

cos(𝜃) = 𝑎 ⋅ 𝑏
‖𝑎‖‖𝑏‖ .

Let’s apply this to the variance and covariance, by noticing that

(𝑋 − 𝜇𝑋𝐸) ⋅ (𝑌 − 𝜇𝑌 𝐸)
‖(𝑋 − 𝜇𝑋𝐸)‖‖(𝑌 − 𝜇𝑌 𝐸)‖ = 𝜎𝑋𝑌

𝜎𝑋𝑋𝜎𝑌 𝑌

so the quantity

𝑟𝑋𝑌 = 𝜎𝑋𝑌
𝜎𝑋𝜎𝑌

(2.4)

measures the cosine of the angle between the vectors 𝑋 − 𝜇𝑋𝐸 and 𝑌 − 𝜇𝑌 𝐸.

Definition: The quantity 𝑟𝑋𝑌 defined in Equation 2.4 is called the (sample) correlation coefficient
between 𝑋 and 𝑌 . We have 0 ≤ |𝑟𝑋𝑌 | ≤ 1 with 𝑟𝑋𝑌 = ±1 if and only if the two vectors 𝑋 − 𝜇𝑋
and 𝑌 − 𝜇𝑌 are collinear in R𝑁 .

*Figure 2.1 illustrates data with different values of the correlation coefficient.

Figure 2.1: Correlation
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2 Principal Component Analysis

2.2.4 The covariance matrix

In a typical situation we have many features for each of our (many) samples, that we organize
into a data matrix 𝑋. To recall, each column of 𝑋 corresponds to a feature that we measure, and
each row corresponds to a sample. For example, each row of our matrix might correspond to a
person enrolled in a study, and the columns correspond to height (cm), weight (kg), systolic blood
pressure, and age (in years):

Table 2.1: A sample data matrix 𝑋
sample Ht Wgt Bp Age
A 180 75 110 35
B 193 80 130 40
… … … … …
U 150 92 105 55

If we have multiple features, as in this example, we might be interested in the variance of each
feature and all of their mutual covariances. This “package” of information can be obtained “all at
once” by taking advantage of some matrix algebra.

Definition: Let 𝑋 be a 𝑁 × 𝑘 data matrix, where the 𝑘 columns of 𝑋 correspond to different
features and the 𝑁 rows to different samples. Let 𝑋0 be the centered version of this data matrix,
obtained by subtracting the mean 𝜇𝑖 of column 𝑖 from all the entries 𝑥𝑠𝑖 in that column. Then the
𝑘 × 𝑘 symmetric matrix

𝐷0 = 1
𝑁 𝑋⊺

0 𝑋0

is called the (sample) covariance matrix for the data.

Proposition: The diagonal entries 𝑑𝑖𝑖 of 𝐷0 are the variances of the columns of 𝑋:

𝑑𝑖𝑖 = 𝜎2
𝑖 = 1

𝑁
𝑁

∑
𝑠=1

(𝑥𝑠𝑖 − 𝜇𝑖)2

and the off-diagonal entries 𝑑𝑖𝑗 = 𝑑𝑗𝑖 are the covariances of the 𝑖𝑡ℎ and 𝑗𝑡ℎ columns of 𝑋:

𝑑𝑖𝑗 = 𝜎𝑖𝑗 = 1
𝑁

𝑁
∑
𝑠=1

(𝑥𝑠𝑖 − 𝜇𝑖)(𝑥𝑠𝑗 − 𝜇𝑗)

The sum of the diagonal entries, the trace of 𝐷0 is the total variance of the data.

Proof: This follows from the definitions, but it’s worth checking the details, which we leave as an
exercise.
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2.2 Variance and Covariance

2.2.5 Visualizing the covariance matrix

If the number of features in the data is not too large, a density matrix plot provides a tool for
visualizing the covariance matrix of the data. A density matrix plot is an 𝑘 ×𝑘 grid of plots (where
𝑘 is the number of features). The entry with (𝑖, 𝑗) coordinates in the grid is a scatter plot of the
𝑖𝑡ℎ feature against the 𝑗𝑡ℎ one if 𝑖 ≠ 𝑗, and is a histogram of the 𝑖𝑡ℎ variable if 𝑖 = 𝑗.
*Figure 2.2 is an example of a density matrix plot for a dataset with 50 samples and 2 features.
This data has been centered, so it can be represented in a 50 × 2 data matrix 𝑋0. The upper left
and lower right graphs are scatter plots of the two columns, while the lower left and upper right
are the histograms of the columns.

Figure 2.2: Density Matrix Plot

2.2.6 Linear Combinations of Features (Scores)

Sometimes useful information about our data can be revealed if we combine different measurements
together to obtain a “hybrid” measure that captures something interesting. For example, in the
Auto MPG dataset that we studied in the section on Linear Regression, we looked at the influence
of both vehicle weight 𝑤 and engine displacement 𝑒 on gas mileage; perhaps their is some value in
considering a hybrid “score” defined as

𝑆 = 𝑎𝑤 + 𝑏𝑒

for some constants 𝑎 and 𝑏 – maybe by choosing a good combination we could find a better predictor
of gas mileage than using one or the other of the features individually.

As another example, suppose we are interested in the impact of the nutritional content of food on
weight gain in a study. We know that both calorie content and the level dietary fiber contribute to
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2 Principal Component Analysis

the weight gain of participants eating this particular food; maybe there is some kind of combined
“calorie/fiber” score we could introduce that captures the impact of that food better.

Finally, when we assign grades in a course, we typically compute a weighted combination of the
scores of each student on a series of assignments. Such a combination is another example of a
“score” and may help explain the origin of the term.

Definition: Let 𝑋0 be a (centered) 𝑁 × 𝑘 data matrix giving information about 𝑘 features for
each of 𝑁 samples. A linear synthetic feature, or a linear score, is a linear combination of the 𝑘
features. The linear score is defined by constants 𝑎1, … , 𝑎𝑘 so that If 𝑦1, … , 𝑦𝑘 are the values of the
features for a particular sample, then the linear score for that sample is

𝑆 = 𝑎1𝑦1 + 𝑎2𝑦2 + ⋯ + 𝑎𝑘𝑦𝑘

Lemma: The values of the linear score for each of the 𝑁 samples can be calculated as

⎡⎢
⎣

𝑆1
⋮

𝑆𝑁

⎤⎥
⎦

= 𝑋0
⎡⎢
⎣

𝑎1
⋮

𝑎𝑘

⎤⎥
⎦

. (2.5)

Proof: Multiplying a matrix by a column vector computes a linear combination of the columns
– that’s what this lemma says. Exercise 3 asks you to write out the indices and make sure you
believe this.

2.2.7 Mean and variance of scores

When we combine features to make a hybrid score, we assume that the features were centered to
begin with, so that each features has mean zero. As a result, the mean of the hybrid features is
again zero.

Lemma: A linear combination of features with mean zero again has mean zero.

Proof: Let 𝑆𝑖 be the score for the 𝑖𝑡ℎ sample, so

𝑆𝑖 =
𝑘

∑
𝑗=1

𝑥𝑖𝑗𝑎𝑗.

where 𝑋0 has entries 𝑥𝑖𝑗. Then the mean value of the score is

𝜇𝑆 = 1
𝑘

𝑁
∑
𝑖=1

𝑆𝑖 = 1
𝑁

𝑁
∑
𝑖=1

𝑘
∑
𝑗=1

𝑥𝑖𝑗𝑎𝑗.

Reversing the order of the sum yields

𝜇𝑆 = 1
𝑁

𝑘
∑
𝑗=1

𝑁
∑
𝑖=1

𝑥𝑖𝑗𝑎𝑗 =
𝑘

∑
𝑗=1

𝑎𝑗
1
𝑁 (

𝑁
∑
𝑖=1

𝑥𝑖𝑗) =
𝑘

∑
𝑗=1

𝑎𝑗𝜇𝑗 = 0
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2.2 Variance and Covariance

where 𝜇𝑗 = 0 is the mean of the 𝑗𝑡ℎ feature (column) of 𝑋0.

The variance is more interesting, and gives us an opportunity to put the covariance matrix to
work. Remember from Equation 2.2 that, since a score 𝑆 has mean zero, it’s variance is 𝜎2

𝑆 =
1
𝑁 𝑆 ⋅ 𝑆 – where here the score 𝑆 is represented by the column vector with entries 𝑆1, … 𝑆𝑘 as in
Equation 2.5.

Lemma: The variance of the score 𝑆 with weights 𝑎1, … 𝑎𝑘 is

𝜎2
𝑆 = 𝑎⊺𝐷0𝑎 = [𝑎1 ⋯ 𝑎𝑘] 𝐷0

⎡⎢
⎣

𝑎1
⋮

𝑎𝑘

⎤⎥
⎦

(2.6)

More generally, if 𝑆1 and 𝑆2 are scores with weights 𝑎1, … , 𝑎𝑘 and 𝑏1, … , 𝑏𝑘 respectively, then the
covariance 𝜎𝑆1𝑆2

is
𝜎𝑆1𝑆2

= 𝑎⊺𝐷0𝑏.

Proof: From Equation 2.2 and Equation 2.5 we know that

𝜎2
𝑆 = 1

𝑁 𝑆 ⋅ 𝑆

and
𝑆 = 𝑋0𝑎.

Since 1
𝑁 𝑆 ⋅ 𝑆 = 1

𝑁 𝑆⊺𝑆, this gives us

1
𝑁 𝜎2

𝑆 = 1
𝑁 (𝑋0𝑎)⊺(𝑋0𝑎) = 1

𝑁 𝑎⊺𝑋⊺
0 𝑋0𝑎 = 𝑎⊺𝐷0𝑎

as claimed.

For the covariance, use a similar argument with Equation 2.3 and Equation 2.5. writing 𝜎𝑆1𝑆2
=

1
𝑁 𝑆1 ⋅ 𝑆2 and the fact that 𝑆1 and 𝑆2 can be written as 𝑋0𝑎 and 𝑋0𝑏.
The point of this lemma is that the covariance matrix contains not just the variances and covariances
of the original features, but also enough information to construct the variances and covariances for
any linear combination of features.

In the next section we will see how to exploit this idea to reveal hidden structure in our data.

2.2.8 Geometry of Scores

Let’s return to the dataset that we looked at in Section 2.2.5. We simplify the density matrix plot
in Figure 2.3, which shows one of the scatter plots and the two histograms.

The scatter plot shows that the data points are arranged in a more or less elliptical cloud oriented
at an angle to the 𝑥𝑦-axes which represent the two given features. The two individual histograms
show the distribution of the two features – each has mean zero, with the 𝑥-features distributed
between −2 and 2 and the 𝑦 feature between −4 and 4. Looking just at the two features individually,
meaning only at the two histograms, we can’t see the overall elliptical structure.

23



2 Principal Component Analysis

Figure 2.3: Simulated Data with Two Features

How can we get a better grip on our data in this situation? We can try to find a “direction” in our
data that better illuminates the variation of the data. For example, suppose that we pick a unit
vector at the origin pointing in a particular direction in our data. See Figure 2.4.

Figure 2.4: A direction in the data

Now we can orthogonally project the datapoints onto the line defined by this vector, as shown in
Figure 2.5.

Recall that if the unit vector is defined by coordinates 𝑢 = [𝑢0, 𝑢1], then the orthogonal projection
of the point 𝑥 with coordinates (𝑥0, 𝑥1) is (𝑥 ⋅ 𝑢)𝑢. Now

𝑥 ⋅ 𝑢 = 𝑢0𝑥0 + 𝑢1𝑥1

so the coordinates of the points along the line defined by 𝑢 are the values of the score 𝑍 defined by
𝑢 = [𝑢0, 𝑢1]. Using our work in the previous section, we see that we can find all of these coordinates
by matrix multiplication:

𝑍 = 𝑋0𝑢

where 𝑋0 is our data matrix. Now let’s add a histogram of the values of 𝑍 to our picture:
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2.2 Variance and Covariance

Figure 2.5: Projecting the datapoints

Figure 2.6: Distribution of Z
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2 Principal Component Analysis

This histogram shows the distribution of the values of 𝑍 along the tilted line defined by the unit
vector 𝑢.
Finally, using our work on the covariance matrix, we see that the variance of 𝑍 is given by

𝜎2
𝑍 = 1

50𝑢⊺𝑋⊺
0 𝑋0𝑢 = 𝑢⊺𝐷0𝑢

where 𝐷0 is the covariance matrix of the data 𝑋0.

Lemma: Let 𝑋0 be a 𝑁 × 𝑘 centered data matrix, and let 𝐷0 = 1
𝑁 𝑋⊺

0 𝑋0 be the associated
covariance matrix. Let 𝑢 be a unit vector in “feature space” R𝑘. Then the score 𝑆 = 𝑋0𝑢 can
be interpreted as the coordinates of the points of 𝑋0 projected onto the line generated by 𝑢. The
variance of this score is

𝜎2
𝑆 = 𝑢⊺𝐷0𝑢 =

𝑁
∑
𝑖=1

𝑠2
𝑖

where 𝑠𝑖 = 𝑋0[𝑖, ∶]𝑢 is the dot product of the 𝑖𝑡ℎ row 𝑋0[𝑖, ∶] with 𝑢. It measures the variability in
the data “in the direction of the unit vector 𝑢”.

2.3 Principal Components

2.3.1 Change of variance with direction

As we’ve seen in the previous section, if we choose a unit vector 𝑢 in the feature space and find the
projection 𝑋0𝑢 of our data onto the line through 𝑢, we get a “score” that we can use to measure
the variance of the data in the direction of 𝑢. What happens as we vary 𝑢?
To study this question, let’s continue with our simulated data from the previous section, and
introduce a unit vector

𝑢(𝜃) = [cos(𝜃) sin(𝜃)] .

This is in fact a unit vector, since sin2(𝜃) + cos2(𝜃) = 1, and it is oriented at an angle 𝜃 from the
𝑥-axis.
The variance of the data in the direction of 𝑢(𝜃) is given by

𝜎2
𝜃 = 𝑢(𝜃)⊺𝐷0𝑢(𝜃).

A plot of this function for the data we have been considering is in Figure 2.7. As you can see, the
variance goes through two full periods with the angle, and it reaches a maximum and minimum
value at intervals of 𝜋/2 – so the two angles where the variance are maximum and minimum are
orthogonal to one another.

The two directions where the variance is maximum and minimum are drawn on the original data
scatter plot in Figure 2.8 .

Let’s try to understand why this is happening.
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2.3 Principal Components

Figure 2.7: Change of variance with angle theta

Figure 2.8: Data with principal directions

2.3.2 Directions of extremal variance

Given our centered, 𝑁 × 𝑖 data matrix 𝑋0, with its associated covariance matrix 𝐷0 = 1
𝑁 𝑋⊺

0 𝑋0,
we would like to find unit vectors 𝑢 in R𝑘 so that

𝜎2
𝑢 = 𝑢⊺𝐷0𝑢

reaches its maximum and its minimum. Here 𝜎2
𝑢 is the variance of the “linear score” 𝑋0𝑢 and it

represents how dispersed the data is in the “u direction” in R𝑘.

In this problem, remember that the coordinates of 𝑢 = (𝑢1, … , 𝑢𝑘) are the variables and the
symmetric matrix 𝐷0 is given. As usual, we to find the maximum and minimum values of 𝜎2

𝑢, we
should look at the partial derivatives of 𝜎2

𝑢 with respect to the variables 𝑢𝑖 and set them to zero.
Here, however, there is a catch – we want to restrict 𝑢 to being a unit vector, with 𝑢⋅𝑢 = ∑ 𝑢2

𝑖 = 1.
So this is a constrained optimization problem:

• Find extreme values of the function

𝜎2
𝑢 = 𝑢⊺𝐷0𝑢

• Subject to the constraint ‖𝑢‖2 = 𝑢 ⋅ 𝑢 = 1 (or 𝑢 ⋅ 𝑢 − 1 = 0)

We will use the technique of Lagrange Multipliers to solve such a problem.

To apply this method, we introduce the function
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2 Principal Component Analysis

𝑆(𝑢, 𝜆) = 𝑢⊺𝐷0𝑢 − 𝜆(𝑢 ⋅ 𝑢 − 1) (2.7)

Then we compute the gradient

∇𝑆 =
⎡
⎢
⎢
⎣

𝜕𝑆
𝜕𝑢1
⋮

𝜕𝑆
𝜕𝑢𝑘𝜕𝑆
𝜕𝜆

⎤
⎥
⎥
⎦

(2.8)

and solve the system of equations ∇𝑆 = 0. Here we have written the gradient as a column vector
for reasons that will become clearer shortly.

Computing all of these partial derivatives looks messy, but actually if we take advantage of matrix
algebra it’s not too bad. The following two lemmas explain how to do this.

Lemma: Let 𝑀 be a 𝑁 × 𝑘 matrix with constant coefficients and let 𝑢 be a 𝑘 × 1 column vector
whose entries are 𝑢1, … 𝑢𝑘. The function 𝐹(𝑢) = 𝑀𝑢 is a linear map from R𝑘 → R𝑁 . Its (total)
derivative is a linear map between the same vector spaces, and satisfies

𝐷(𝐹)(𝑣) = 𝑀𝑣

for any 𝑘 × 1 vector 𝑣. If 𝑢 is a 1 × 𝑁 matrix, and 𝐺(𝑢) = 𝑢𝑀 , then

𝐷(𝐺)(𝑣) = 𝑣𝑀

for any 1 × 𝑁 vector 𝑣. (This is the matrix version of the derivative rule that 𝑑
𝑑𝑥(𝑎𝑥) = 𝑎 for a

constant 𝑎.)
Proof: Since 𝐹 ∶ R𝑘 → R𝑁 , we can write out 𝐹 in more traditional function notation as

𝐹(𝑢) = (𝐹1(𝑢1, … , 𝑢𝑘), … , 𝐹𝑁(𝑢1, … , 𝑢𝑘)

where

𝐹𝑖(𝑢1, … 𝑢𝑘) =
𝑘

∑
𝑗=1

𝑚𝑖𝑗𝑢𝑗.

Thus 𝜕𝐹𝑖
𝜕𝑢𝑗

= 𝑚𝑖𝑗. The total derivative 𝐷(𝐹) is the linear map with matrix

𝐷(𝐹)𝑖𝑗 = 𝜕𝐹𝑖
𝜕𝑢𝑗

= 𝑚𝑖𝑗

and so 𝐷(𝐹) = 𝑀 .

The other result is proved the same way.

Lemma: Let 𝐷 be a symmetric 𝑘 × 𝑘 matrix with constant entries and let 𝑢 be an 𝑘 × 1 column
vector of variables 𝑢1, … , 𝑢𝑘. Let 𝐹 ∶ R𝑘 → 𝑅 be the function 𝐹(𝑢) = 𝑢⊺𝐷𝑢. Then the gradient
∇𝑢𝐹 is a vector field – that is, a vector-valued function of 𝑢, and is given by the formula

∇𝑢𝐹 = 2𝐷𝑢
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2.3 Principal Components

Proof: Let 𝑑𝑖𝑗 be the 𝑖, 𝑗 entry of 𝐷. We can write out the function 𝐹 to obtain

𝐹(𝑢1, … , 𝑢𝑘) =
𝑘

∑
𝑖=1

𝑘
∑
𝑗=1

𝑢𝑖𝑑𝑖𝑗𝑢𝑗.

Now 𝜕𝐹
𝜕𝑢𝑖

is going to pick out only terms where 𝑢𝑖 appears, yielding:

𝜕𝐹
𝜕𝑢𝑖

=
𝑘

∑
𝑗=1

𝑑𝑖𝑗𝑢𝑗 +
𝑘

∑
𝑗=1

𝑢𝑗𝑑𝑗𝑖

Here the first sum catches all of the terms where the first “u” is 𝑢𝑖; and the second sum catches
all the terms where the second “u” is 𝑢𝑖. The diagonal terms 𝑢2

𝑖 𝑑𝑖𝑖 contribute once to each sum,
which is consistent with the rule that the derivative of 𝑢2

𝑖 𝑑𝑖𝑖 = 2𝑢𝑖𝑑𝑖𝑖. To finish the proof, notice
that

𝑘
∑
𝑗=1

𝑢𝑗𝑑𝑗𝑖 =
𝑘

∑
𝑗=1

𝑑𝑖𝑗𝑢𝑗

since 𝐷 is symmetric, so in fact the two terms are the same Thus

𝜕
𝜕𝑢𝑖

𝐹 = 2
𝑘

∑
𝑗=1

𝑑𝑖𝑗𝑢𝑗

But the right hand side of this equation is twice the 𝑖𝑡ℎ entry of 𝐷𝑢, so putting the results together
we get

∇𝑢𝐹 = ⎡
⎢
⎣

𝜕𝐹
𝜕𝑢1
⋮

𝜕𝐹
𝜕𝑢𝑘

⎤
⎥
⎦

= 2𝐷𝑢.

The following theorem puts all of this work together to reduce our questions about how variance
changes with direction.

2.3.3 Critical values of the variance

Theorem: The critical values of the variance 𝜎2
𝑢, as 𝑢 varies over unit vectors in R𝑁 , are the

eigenvalues 𝜆1, … , 𝜆𝑘 of the covariance matrix 𝐷, and if 𝑒𝑖 is a unit eigenvector corresponding to
𝜆𝑖, then 𝜎2

𝑒𝑖
= 𝜆𝑖.

Proof: Recall that we introduced the Lagrange function 𝑆(𝑢, 𝜆), whose critical points give us the
solutions to our constrained optimization problem. As we said in Equation 2.7:

𝑆(𝑢, 𝜆) = 𝑢⊺𝐷0𝑢 − 𝜆(𝑢 ⋅ 𝑢 − 1) = 𝑢⊺𝐷0𝑢 − 𝜆(𝑢 ⋅ 𝑢) + 𝜆

Now apply our Matrix calculus lemmas. First, let’s treat 𝜆 as a constant and focus on the 𝑢
variables. We can write 𝑢 ⋅ 𝑢 = 𝑢⊺𝐼𝑁𝑢 where 𝐼𝑁 is the identity matrix to compute:

∇𝑢𝑆 = 2𝐷0𝑢 − 2𝜆𝑢
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2 Principal Component Analysis

For 𝜆 we have
𝜕

𝜕𝜆𝑆 = −𝑢 ⋅ 𝑢 + 1.

The critical points occur when
∇𝑢𝑆 = 2(𝐷0 − 𝜆)𝑢 = 0

and
𝜕

𝜕𝜆𝑆 = 1 − 𝑢 ⋅ 𝑢 = 0

The first equation says that 𝜆 must be an eigenvalue, and 𝑢 an eigenvector:

𝐷0𝑢 = 𝜆𝑢

while the second says 𝑢 must be a unit vector 𝑢 ⋅ 𝑢 = ‖𝑢‖2 = 1. The second part of the result
follows from the fact that if 𝑒𝑖 is a unit eigenvector with eigenvalue 𝜆𝑖 then

𝜎2
𝑒𝑖

= 𝑒⊺
𝑖 𝐷0𝑒𝑖 = 𝜆𝑖‖𝑒𝑖‖2 = 𝜆𝑖.

To really make this result pay off, we need to recall some key facts about the eigenvalues and
eigenvectors of symmetric matrices. Because these facts are so central to this result, and to other
applications throughout machine learning and mathematics generally, we provide proofs in Sec-
tion 2.5.
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2.3 Principal Components

Table 2.2: Properties of Eigenvalues of Real Symmetric Matrices
Summary
1. All of the eigenvalues 𝜆1, … , 𝜆𝑙 of 𝐷 are real. If 𝑢⊺𝐷𝑢 ≥ 0 for all 𝑢 ∈ R𝑘, then all eigenvalues
𝜆𝑖 are non-negative. In the latter case we say that 𝐷 is positive semi-definite.
2. If 𝑣 is an eigenvector for 𝐷 with eigenvalue 𝜆, and 𝑤 is an eigenvector with a different
eigenvalue 𝜆′, then 𝑣 and 𝑤 are orthogonal: 𝑣 ⋅ 𝑤 = 0.
3. There is an orthonormal basis 𝑢1, … , 𝑢𝑘 of R𝑘 made up of eigenvectors of 𝐷 corresponding to
the eigenvalues 𝜆𝑖.
4. Let Λ be the diagonal matrix with entries 𝜆1, … , 𝜆𝑁 and let 𝑃 be the matrix whose columns
are made up of the vectors 𝑢𝑖. Then 𝐷 = 𝑃Λ𝑃 ⊺.

If we combine our theorem on the critical values with the spectral theorem we get a complete
picture. Let 𝐷0 be the covariance matrix of our data. Since

𝜎2
𝑢 = 𝑢⊺𝐷0𝑢 ≥ 0(it’s a sum of squares)

we know that the eigenvalues 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑘 ≥ 0 are all nonnegative. Choose a corresponding
sequence 𝑢1, … 𝑢𝑘 of orthogonal eigenvectors where all ‖𝑢𝑖‖2 = 1. Since the 𝑢𝑖 form a basis of R𝑁 ,
any score is a linear combination of the 𝑢𝑖:

𝑆 =
𝑘

∑
𝑖=1

𝑎𝑖𝑢𝑖.

Since 𝑢⊺
𝑖 𝐷0𝑢𝑗 = 𝜆𝑗𝑢⊺

𝑖 𝑢𝑗 = 0 unless 𝑖 = 𝑗, in which case it is 𝜆𝑖, we can compute

𝜎2
𝑆 =

𝑘
∑
𝑖=1

𝜆𝑖𝑎2
𝑖 ,

and ‖𝑆‖2 = ∑𝑘
𝑖=1 𝑎2

𝑖 since the 𝑢𝑖 are an orthonormal set. So in these coordinates, our optimization
problem is:

• maximize ∑ 𝜆𝑖𝑎2
𝑖

• subject to the constraint ∑ 𝑎2
𝑖 = 1.

We don’t need any fancy math to see that the maximum happens when 𝑎1 = 1 and the other
𝑎𝑗 = 0, and in that case, the maximum is 𝜆1. (If 𝜆1 occurs more than once, there may be a whole
subspace of directions where the variance is maximal). Similarly, the minimum value is 𝜆𝑘 and
occurs when 𝑎𝑘 = 1 and the others are zero.

2.3.4 Subspaces of extremal variance

We can generalize the idea of the variance of our data in a particular direction to a higher dimen-
sional version of total variance in a subspace. Suppose that 𝐸 is a subspace of R𝑘 and 𝑈 is a
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2 Principal Component Analysis

matrix whose columns span 𝐸 – the columns of 𝑈 are the weights of a family of scores that span
𝐸. The values of these scores are 𝑋𝑈 and the covariance matrix of this projected data is

1
𝑁 𝑈⊺𝑋⊺𝑋𝑈 = 𝑈⊺𝐷0𝑈.

.

Finally, the total variance 𝜎2
𝐸 of the data projected into 𝐸 is the sum of the diagonal entries of the

matrix

𝜎2
𝐸 = 𝑡𝑟𝑎𝑐𝑒(𝑈⊺𝐷0𝑈)

Just as the variance in a given direction 𝑢 depends on the scaling of 𝑢, the variance in a subspace
depends on the scaling of the columns of 𝑈 . To normalize this scaling, we assume that the columns
of 𝑈 are an orthonormal basis of the subspace 𝐸.

Now we can generalize the question asked in Section 2.3.2 by seeking, not just a vector 𝑢 pointing
in the direction of the extremal variance, but instead the subspace 𝑈𝑠 of dimension 𝑠 with the
property that the total variance of the projection of the data into 𝑈𝑠 is maximal compared to its
projection into other subspaces of that dimension. This is called a subspace of extremal variance.

To make this concrete, suppose we consider a subspace 𝐸 of R𝑘 of dimension 𝑡 with basis 𝑤1, … , 𝑤𝑡.
Complete this to a basis 𝑤1, … , 𝑤𝑡, 𝑤𝑡+1, … , 𝑤𝑘 of R𝑘 and then apply the Gram Schmidt Process
(see Section 2.5.1) to find an orthonormal basis 𝑤′

1, … , 𝑤′
𝑠, 𝑤′

𝑠+1, … , 𝑤′
𝑘 where the 𝑤′

1, … , 𝑤′
𝑡 are an

orthonormal basis for 𝐸. Let 𝑊 be the 𝑘 × 𝑡 matrix whose columns are the 𝑤′
𝑖 for 𝑖 = 1, … , 𝑡. The

rows of the matrix 𝑋0𝑊 given the coordinates of the projection of each sample into the subspace
𝐸 expressed in terms of the scores corresponding to these vectors 𝑤′

𝑖. The total variance of these
projections is

𝜎2
𝐸 =

𝑡
∑
𝑖=1

‖𝑋0𝑤′
𝑖‖2 =

𝑡
∑
𝑖=1

(𝑤′
𝑖)⊺𝑋⊺

0 𝑋0𝑤′
𝑖 =

𝑡
∑
𝑖=1

(𝑤′
𝑖)⊺𝐷0𝑤′

𝑖

If we want to maximize this, we have the constrained optimization problem of finding 𝑤′
1, … , 𝑤′

𝑡 so
that

• ∑𝑡
𝑖=1(𝑤′

𝑖)⊺𝐷0𝑤′
𝑖 is maximal

• subject to the constraint that each 𝑤𝑖 has ‖𝑤′
𝑖‖2 = 1,

• and that the 𝑤′
𝑖 are orthogonal, meaning 𝑤′

𝑖 ⋅ 𝑤′
𝑗 = 0 for 𝑖 ≠ 𝑗,

• and that the 𝑤′
𝑖 are linearly independent.

Then the span 𝐸 of these 𝑤′
𝑖 is subspace of extremal variance.

Theorem: A 𝑡-dimensional subspace 𝐸 is a subspace of extremal variance if and only if it is
spanned by 𝑡 orthonormal eigenvectors of the matrix 𝐷0 corresponding to the 𝑡 largest eigenvalues
for 𝐷0.
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2.3 Principal Components

Proof: We can approach this problem using Lagrange multipliers and matrix calculus if we are
careful. Our unknown is 𝑘 × 𝑡 matrix 𝑊 whose columns are the 𝑡 (unknown) vectors 𝑤′

𝑖. The
objective function that we are seeking to maximize is

𝐹 = 𝑡𝑟𝑎𝑐𝑒(𝑊 ⊺𝐷0𝑊) =
𝑡

∑
𝑖=1

(𝑤′
𝑖)⊺𝐷0𝑤𝑖.

The constraints are the requirements that ‖𝑤′
𝑖‖2 = 1 and 𝑤′

𝑖 ⋅ 𝑤′
𝑗 = 0 if 𝑖 ≠ 𝑗. If we introduction

a matrix of lagrange multipliers Λ = (𝜆𝑖𝑗), where 𝜆𝑖𝑗 is the multiplier that goes with the the first
of these constraints when 𝑖 = 𝑗, and the second when 𝑖 ≠ 𝑗, we can express our Lagrange function
as:

𝑆(𝑊, Λ) = 𝑡𝑟𝑎𝑐𝑒(𝑊 ⊺𝐷0𝑊) − (𝑊 ⊺𝑊 − 𝐼)Λ
where 𝐼 is the 𝑡 × 𝑡 identity matrix.

Taking the derivatives with respect to the entries of 𝑊 and of Λ yields the following two equations:

𝐷0𝑊 = 𝑊Λ
𝑊 ⊺𝑊 = 𝐼

The first of these equations says that the space 𝐸 spanned by the columns of 𝑊 is invariant under
𝐷0, while the second says that the columns of 𝑊 form an orthonormal basis.

Let’s assume for the moment that we have a matrix 𝑊 that satisfies these conditions.
Then it must be the case that Λ is a symmetric, real valued 𝑡 × 𝑡 matrix, since

𝑊 ⊺𝐷0𝑊 = 𝑊 ⊺𝑊Λ = Λ.

and the matrix on the left is symmetric.

By the properties of real symmetric matrices (the spectral theorem), there are orthonormal vectors
𝑞1, … 𝑞𝑡 that are eigenvectors of Λ with corresponding eigenvalues 𝜏𝑖. If we let 𝑄 be the matrix
whose columns are the vectors 𝑞𝑖 and let 𝑇 be the diagonal 𝑡 × 𝑡 matrix whose entries are the 𝜏𝑖,
we have

Λ𝑄 = 𝑄𝑇 .

If we go back to our original equations, we see that if 𝑊 exists such that 𝐷𝑊 = 𝑊Λ, then there
is a matrix 𝑄 with orthonormal columns and a diagonal matrix 𝑇 such that

𝐷0𝑊𝑄 = 𝑊Λ𝑄 = 𝑊𝑄𝑇 .

In other words, 𝑊𝑄 is a matrix whose columns are eigenvectors of 𝐷0 with eigenvalues 𝜏𝑖 for
𝑖 = 1, … , 𝑡.
Thus we see how to construct an invariant subspace 𝐸 and a solution matrix 𝑊 . Such an 𝐸 is
spanned by 𝑡 orthonormal eigenvectors 𝑞𝑖 with eigenvalues 𝜏𝑖 of 𝐷0; and 𝑊 is is the matrix whose
columns are the 𝑞𝑖. Further, in that case, the total variance associated to 𝐸 is the sum of the
eigenvalues 𝜏𝑖; to make this as large as possible, we should choose our eigenvectors to correspond
to 𝑡 of the largest eigenvalues of 𝐷0. This concludes the proof.
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2 Principal Component Analysis

2.3.5 Definition of Principal Components

Definition: The orthonormal unit eigenvectors 𝑢𝑖 for 𝐷0 are the principal directions or principal
components for the data 𝑋0.

Theorem: The maximum variance occurs in the principal direction(s) associated to the largest
eigenvalue, and the minimum variance in the principal direction(s) associated with the smallest
one. The covariance between scores in principal directions associatedwith different eigenvalues is
zero.

At this point, the picture in Figure 2.8 makes sense – the red and green dashed lines are the
principal directions, they are orthogonal to one another, and the point in the directions where the
data is most (and least) “spread out.”

Proof: The statement about the largest and smallest eigenvalues is proved at the very end of the
last section. The covariance of two scores corresponding to different eigenvectors 𝑢𝑖 and 𝑢𝑗 is

𝑢⊺
𝑖 𝐷0𝑢𝑗 = 𝜆𝑗(𝑢𝑖 ⋅ 𝑢𝑗) = 0

since the 𝑢𝑖 and 𝑢𝑗 are orthogonal.

Sometimes the results above are presented in a slightly different form, and may be referred to, in
part, as Rayleigh’s theorem.

Corollary: (Rayleigh’s Theorem) Let 𝐷 be a real symmetric matrix and let

𝐻(𝑣) = max
𝑣≠0

𝑣⊺𝐷𝑣
𝑣⊺𝑣 .

Then 𝐻(𝑣) is the largest eigenvalue of 𝐷. (Similarly, if we replace max by min, then the minimum
is the least eigenvalue).

Proof: The maximum of the function 𝐻(𝑣) is the solution to the same optimization problem that
we considered above.

Exercises.

1. Prove that the two expressions for 𝜎2
𝑋 given in Equation 2.1 are the same.

2. Prove that the covariance matrix is as described in the proposition in Section 2.2.4.

3. Let 𝑋0 be a 𝑘 × 𝑁 matrix with entries 𝑥𝑖𝑗 for 1 ≤ 𝑖 ≤ 𝑘 and 1 ≤ 𝑗 ≤ 𝑁 . If a linear score is
defined by the constants 𝑎1, … 𝑎𝑁 , check that equation Equation 2.5 holds as claimed.

4. Why is it important to use a unit vector when computing the variance of 𝑋0 in the direction
of 𝑢? Suppose 𝑣 = 𝜆𝑢 where 𝑢 is a unit vector and 𝜆 > 0 is a constant. Let 𝑆′ be the score
𝑋0𝑣. How is the variance of 𝑆′ related to that of 𝑆 = 𝑋0𝑢?
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2.4 Dimensionality Reduction via Principal Components

2.4 Dimensionality Reduction via Principal Components

The principal components associated with a dataset separate out directions in the feature space in
which the data is most (or least) variable. One of the main applications of this information is to
enable us to take data with a great many features – a set of points in a high dimensional space
– and, by focusing our attention on the scores corresponding to the principal directions, capture
most of the information in the data in a much lower dimensional setting.

To illustrate how this is done, let 𝑋 be a 𝑁 × 𝑘 data matrix, let 𝑋0 be its centered version, and
let 𝐷0 = 1

𝑁 𝑋⊺
0 𝑋 be the associated covariance matrix.

Apply the spectral theorem (proved in Section 2.5) to the covariance matrix to obtain eigenvalues
𝜆1 ≥ 𝜆2 ≥ ⋯ 𝜆𝑘 ≥ 0 and associated eigenvectors 𝑢1, … , 𝑢𝑘. The scores 𝑆𝑖 = 𝑋0𝑢𝑖 give the values
of the data in the principal directions. The variance of 𝑆𝑖 is 𝜆𝑖.

Now choose a number 𝑡 < 𝑘 and consider the vectors 𝑆1, … , 𝑆𝑡. The 𝑗𝑡ℎ entry in 𝑆𝑖 is the value
of the score 𝑆𝑖 for the 𝑗𝑡ℎ data point. Because 𝑆1, … , 𝑆𝑡 capture the most significant variability in
the original data, we can learn a lot about our data by considering just these 𝑡 features of the data,
instead of needing all 𝑁 .

To illustrate, let’s look at an example. We begin with a synthetic dataset 𝑋0 which has 200 samples
and 15 features. The data (some of it) for some of the samples is shown in Table 2.3.

Table 2.3: Simulated Data for PCA Analysis
f-0 f-1 f-2 f-3 f-4 ... f-10 f-11 f-12 f-13 f-14

s-0 1.18 -0.41 2.02 0.44 2.24 ... 0.32 0.95 0.88 1.10 0.89
s-1 0.74 0.58 1.54 0.23 2.05 ... 0.99 1.14 1.56 0.99 0.59
... ... ... ... ... ... ... ... ... ... ... ...
s-198 1.04 2.02 1.44 0.40 1.33 ... 0.62 0.62 0.54 1.96 0.04
s-199 0.92 2.09 1.58 1.19 1.17 ... 0.42 0.85 0.83 2.22 0.90

The full dataset is a 200 × 15 matrix; it has 3000 numbers in it and we’re not really equipped to
make sense of it. We could try some graphing – for example, Figure 2.9 shows a scatter plot of two
of the features plotted against each other.

Unfortunately there’s not much to see in Figure 2.9 – just a blob – because the individual features
of the data don’t tell us much in isolation, whatever structure there is in this data arises out of the
relationship between different features.

In Figure 2.10 we show a “density grid” plot of the data. The graph in position 𝑖, 𝑗 shows a scatter
plot of the 𝑖𝑡ℎ and 𝑗𝑡ℎ columns of the data, except in the diagonal positions, where in position 𝑖, 𝑖
we plot a histogram of column 𝑖. There’s not much structure visible; it is a lot of blobs.

So let’s apply the theory of principal components. We use a software package to compute the
eigenvalues and eigenvectors of the matrix 𝐷0. The 15 eigenvalues 𝜆1 ≥ ⋯ ≥ 𝜆15 are plotted, in
descending order, in Figure 2.11 .
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Figure 2.9: Scatter Plot of Two Features

Figure 2.10: Density Grid Plot of All Features
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2.4 Dimensionality Reduction via Principal Components

Figure 2.11: Eigenvalues of the Covariance Matrix

This plot shows that the first 4 eigenvalues are relatively large, while the remaining 11 are smaller
and not much different from each other. We interpret this as saying that most of the variation in
the data is accounted for by the first four principal components. We can even make this quantitative.
The total variance of the data is the sum of the eigenvalues of the covariance matrix – the trace of
𝐷0 – and in this example that sum is around 5. The sum of the first 4 eigenvalues is about 4, so
the first four eignvalues account for about 4/5 of the total variance, or about 80% of the variation
of the data.

Now let’s focus in on the two largest eigenvalues 𝜆1 and 𝜆2 and their corresponding eigenvectors
𝑢1 and 𝑢2. The 200 × 1 column vectors 𝑆1 = 𝑋0𝑢1 and 𝑆2 = 𝑋0𝑢2 are the values of the scores
associated with these two eigenvectors. So for each data point (each row of 𝑋0) we have two values
(the corresponding entries of 𝑆1 and 𝑆2.) In Figure 2.12 we show a scatter plot of these scores.

Notice that suddenly some structure emerges in our data! We can see that the 200 points are
separated into five clusters, distinguished by the values of their scores! This ability to find hidden
structure in complicated data, is one of the most important applications of principal components.

If we were dealing with real data, we would now want to investigate the different groups of points
to see if we can understand what characteristics the principal components have identified.

2.4.1 Loadings

There’s one last piece of the PCA puzzle that we are going to investigate. In Figure 2.12, we plotted
our data points in the coordinates given by the first two principal components. In geometric terms,
we took the cloud of 200 points in R15 given by the rows of 𝑋0 and projected those points into the
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Figure 2.12: Scatter Plot of Scores in the First Two Principal Directions

two dimensional plane spanned by the eigenvectors 𝑢1 and 𝑢2, and then plotted the distribution of
the points in that plane.

More generally, suppose we take our dataset 𝑋0 and consider the first 𝑡 principal components
corresponding to the eigenvectors 𝑢1, … , 𝑢𝑡. The projection of the data into the space spanned by
these eigenvectors is the represented by the 𝑆 = 𝑘 × 𝑡 matrix 𝑋0𝑈 where 𝑈 is the 𝑘 × 𝑡 matrix
whose columns are the eigenvectors 𝑢𝑖. Each row of 𝑆 gives the values of the score arising from 𝑢𝑖
in the 𝑖𝑡ℎ column for 𝑖 = 1, … , 𝑡.

The remaining question that we wish to consider is: how can we see some evidence of the original
features in subspace? We can answer this by imagining that we had an artificial sample 𝑥 that has
a measurement of 1 for the 𝑖𝑡ℎ feature and a measurement of zero for all the other features. The
corresponding point is represented by a 1 × 𝑘 row vector with a 1 in position 𝑖. The projection
of this synthetic sample into the span of the first 𝑡 principal components is the 1 × 𝑡 vector 𝑥𝑈 .
Notice, however, that 𝑥𝑈 is just the 𝑖𝑡ℎ row of the matrix 𝑈 . This vector in the space spanned by
the 𝑢𝑖 is called the “loading” of the 𝑖𝑡ℎ feature in the principal components.

This is illustrated in Figure 2.13, which shows a line along the direction of the loading corresponding
to the each feature added to the scatter plot of the data in the plane spanned by the first two
principal components. One observation one can make is that some of the features are more “left
to right”, like features 7 and 8, while others are more “top to bottom”, like 6. So points that lie
on the left side of the plot have smaller values of features 7 and 8, while those at the top of the
plot have larger values of feature 6.
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Figure 2.13: Loadings in the Principal Component Plane

2.4.2 The singular value decomposition

The singular value decomposition is a slightly more detailed way of looking at principal components.
Let Λ be the diagonal matrix of eigenvalues of 𝐷0 and let 𝑃 be the 𝑘 × 𝑘 orthogonal matrix whose
columns are the principal components. Then we have

𝐷0 = 1
𝑁 𝑋⊺

0 𝑋0 = 𝑃Λ𝑃 ⊺.

Consider the 𝑁 × 𝑘 matrix
𝑋0𝑃 = 𝐴.

As we saw in the previous section, the columns of 𝐴 give the projection of the data into the 𝑘
principal directions. Then

𝐴⊺𝐴 = 𝑃 ⊺𝑋⊺
0 𝑋0𝑃 = 𝑁Λ.

In other words, the columns of 𝐴 are orthogonal and the diagonal entries of 𝐴⊺𝐴 are 𝑁 times the
variance of the data in the various principal directions.

Now we are going to tinker with the matrix 𝐴 in order to make an 𝑁 × 𝑁 orthogonal matrix. The
first modification we make is to normalize the columns of 𝐴 so that they have length 1. We do this
by setting

𝐴1 = 𝐴(𝑁Λ)−1/2.
Then 𝐴⊺

1 𝐴1 is the identity, so the columns of 𝐴1 are orthonormal. Here we are assuming that the
eigenvalues of 𝐷0 are nonzero – this isn’t strictly necessary, and we could work around this, but for
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simplicity we will assume it’s true. It amounts to the assumption that the independent variables
are not linearly related, as we’ve seen before.

The second modification is to extend 𝐴1 to an 𝑁 × 𝑁 matrix. The 𝑘 columns of 𝐴1 span only a
𝑘-dimensional subspace of the 𝑁 -dimensional space where the feature vectors lie.
Complete the subspace by finding an orthogonal complement to it – that is, find 𝑁 − 𝑘 mutually
orthogonal unit vectors all orthogonal to the column space of 𝐴1. By adding these vectors to 𝐴 as
columns, create an extended 𝑁 × 𝑁 matrix ̃𝐴1 which is orthogonal.

Notice that ̃𝐴⊺
1 𝐴 is an 𝑁 × 𝑘 matrix whose upper 𝑘 × 𝑘 block is (𝑁Λ)1/2 and whose final 𝑁 − 𝑘

rows are all zero. We call this matrix Λ̃.
To maintain consistency with the traditional formulation, we let 𝑈 = ̃𝐴⊺

1 and then we have the
following proposition.

Proposition: We have a factorization

𝑋0 = 𝑈Λ̃𝑃 ⊺ (2.9)

where 𝑈 and 𝑃 are orthogonal matrices of size 𝑁 × 𝑁 and 𝑘 × 𝑘 respectively, and Λ̃ is an 𝑁 × 𝑘
diagonal matrix. This is called the “singular value decomposition” of 𝑋0, and the entries of Λ̃ are
called the singular values. If we let 𝑢1, … , 𝑢𝑘 be the first 𝑘 rows of 𝑈 , then the 𝑘 column vectors
𝑢⊺

𝑖 are an orthonormal basis for the feature space spanned by the columns of 𝑋0, and they point
in the “principal directions” for the data matrix 𝑋0.

In this section we take a slight detour and apply what we’ve learned about the covariance ma-
trix, principal components, and the singular value decomposition to the original problem of linear
regression that we studied in Chapter 1.

In this setting, in addition to our centered data matrix 𝑋0, we have a vector 𝑌 of target values
and we find the “best” approximation

̂𝑌 = 𝑋0𝑀
using the least squares method. As we showed in Chapter 1, the optimum 𝑀 is found as

𝑀 = (𝑋⊺
0 𝑋0)−1𝑋⊺𝑌 = 𝑁𝐷−1

0 𝑋⊺
0 𝑌

and the predicted values ̂𝑌 are
̂𝑌 = 𝑁𝑋0𝐷−1

0 𝑋⊺
0 𝑌 .

Geometrically, we understood this process as defining ̂𝑌 to be the orthogonal projection of 𝑌 into
the subspace spanned by the columns of 𝑋0.

Let’s use the decomposition (see Equation 2.9 ) 𝑋0 = 𝑈Λ̃𝑃 ⊺ in this formula. First, notice that

𝑋⊺
0 𝑋0 = 𝑃 Λ̃⊺𝑈⊺𝑈Λ̃𝑃 ⊺ = 𝑃 Λ̃⊺Λ̃𝑃 ⊺.

The middle term Λ̃⊺Λ̃ is the 𝑘 × 𝑘 matrix Λ whose diagonal entries are 𝑁𝜆𝑖 where 𝜆𝑖 are the
eigenvalues of the covariance matrix 𝐷0. Assuming these are all nonzero (which is tantamount to
the assumption that the covariance matrix is invertible), we obtain

̂𝑌 = 𝑁𝑈Λ̃𝑃 ⊺𝑃Λ−1𝑃 ⊺𝑃 Λ̃⊺𝑈⊺𝑌 .
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There is a lot of cancellation here, and in the end what’s left is
̂𝑌 = 𝑈𝐸𝑈⊺𝑌

where 𝐸 is and 𝑁 × 𝑁 matrix whose upper 𝑘 × 𝑘 block is the identity and whose remaining entries
are zero. Rearranging a bit more we have

𝑈⊺ ̂𝑌 = 𝐸𝑈⊺𝑌 .

To unpack this equation, let 𝑢1, … , 𝑢𝑁 be the rows of the matrix 𝑈 . Since 𝑈 is an orthogonal
matrix, the column vectors 𝑢⊺

𝑖 are an orthonormal basis for the 𝑁 dimensional space where the
columns of 𝑋0 lie. We can write the target vector 𝑌

𝑌 =
𝑁

∑
𝑗=1

(𝑢𝑗 ⋅ 𝑌 )𝑢⊺
𝑗 .

Then the projection ̂𝑌 of 𝑌 into the subspace spanned by the data is obtained by dropping the
last 𝑁 − 𝑘 terms in the sum:

̂𝑌 =
𝑘

∑
𝑗=1

(𝑢𝑗 ⋅ 𝑌 )𝑢⊺
𝑗

2.5 Eigenvalues and Eigenvectors of Real Symmetric Matrices (The
Spectral Theorem)

Now that we’ve shown how to apply the theory of eigenvalues and eigenvectors of symmetric
matrices to extract principal directions from data, and to use those principal directions to find
structure, we will give a proof of the properties that we summarized in Table 2.2.

A key tool in the proof is the Gram-Schmidt orthogonalization process.

2.5.1 Gram-Schmidt

Proposition (Gram-Schmidt Process): Let 𝑤1, … , 𝑤𝑘 be a collection of linearly independent
vectors in R𝑁 and let 𝑊 be the span of the 𝑤𝑖. Let 𝑢1 = 𝑤1 and let

𝑢𝑖 = 𝑤𝑖 −
𝑖−1
∑
𝑗=1

𝑤𝑖 ⋅ 𝑢𝑗
𝑢𝑗 ⋅ 𝑢𝑗

𝑢𝑗

for 𝑖 = 2, … , 𝑘. Then

• The vectors 𝑢𝑖 are orthogonal: 𝑢𝑖 ⋅ 𝑢𝑗 = 0 unless 𝑖 = 𝑗.
• The vectors 𝑢𝑖 span 𝑊 .
• Each 𝑢𝑖 is orthogonal to the all of 𝑤1, … , 𝑤𝑖−1.
• The vectors 𝑢′

𝑖 = 𝑢𝑖/‖𝑢𝑖‖ are orthonormal.

Proof: This is an inductive exercise, and we leave it to you to work out the details.
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2.5.2 The spectral theorem

Theorem: Let 𝐷 be a real symmetric 𝑁 × 𝑁 matrix. Then:

1. All of the 𝑁 eigenvalues 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑁 are real. If 𝑢⊺𝐷𝑢 ≥ 0 for all 𝑢 ∈ R𝑁 , then all
eigenvalues 𝜆𝑖 ≥ 0.

2. The matrix 𝐷 is diagonalizable – that is, it has 𝑁 linearly independent eigenvectors.
3. If 𝑣 and 𝑤 are eigenvectors corresponding to eigenvalues 𝜆 and 𝜆′, with 𝜆 ≠ 𝜆′, then 𝑣 and

𝑤 are orthogonal: 𝑣 ⋅ 𝑤 = 0.
4. There is an orthonormal basis 𝑢1, … , 𝑢𝑁 of R𝑁 made up of eigenvectors for the eigenvalues

𝜆𝑖.
5. Let Λ be the diagonal matrix with entries 𝜆1, … , 𝜆𝑁 and let 𝑃 be the matrix whose columns

are made up of the eigenvectors 𝑢𝑖. Then 𝐷 = 𝑃Λ𝑃 ⊺.

Proof: First of all, we use the fact that any matrix has at least one eigenvector with associated
eigenvalue. This is a theorem from linear algebra that relies on the fundamental theorem of algebra.
With this result available, we start by proving part 1. Suppose that 𝜆 is an eigenvalue of 𝐷. Let
𝑢 be a corresponding nonzero eigenvector. Then 𝐷𝑢 = 𝜆𝑢 and 𝐷𝑢 = 𝜆𝑢, where 𝑢 is the vector
whose entries are the conjugates of the entries of 𝑢 (and 𝐷 = 𝐷 since 𝐷 is real). Now we have

𝑢⊺𝐷𝑢 = 𝜆𝑢 ⋅ 𝑢 = 𝜆‖𝑢‖2

and
𝑢⊺𝐷𝑢 = 𝜆𝑢 ⋅ 𝑢 = 𝜆‖𝑢‖2.

But the left hand side of both of these equations are the same (take the transpose and use the
symmetry of 𝐷) so we must have 𝜆‖𝑢‖2 = 𝜆‖𝑢‖2 so 𝜆 = 𝜆, meaning 𝜆 is real.

If we have the additional property that 𝑢⊺𝐷𝑢 ≥ 0 for all 𝑢, then in particular 𝑢⊺
𝑖 𝐷𝑢𝑖 = 𝜆‖𝑢‖2 ≥ 0,

and since ‖𝑢‖2 > 0 we must have 𝜆 ≥ 0.
Property 2 is in some ways the most critical fact. We know from the general theory of the charac-
teristic polynomial, and the fundamental theorem of algebra, that 𝐷 has 𝑁 complex eigenvalues,
although some may be repeated. However, it may not be the case that 𝐷 has 𝑁 linearly indepen-
dent eigenvectors – it may not be diagonalizable. So we will establish that any symmetric matrix
over the real numbers is diagonalizable.

A one-by-one matrix is automatically symmetric and diagonalizable. In the 𝑁 -dimensional case,
we know, at least, that 𝐷 has at least one eigenvector, and real one at that by part 1, and this
gives us a place to begin an inductive argument.

Let 𝑣𝑁 ≠ 0 be an eigenvector with eigenvalue 𝜆 and normalized so that ‖𝑣𝑁‖2 = 1,
and extend this to a basis 𝑣1, … 𝑣𝑁 of R𝑁 . Apply the Gram-Schmidt process to construct an
orthonormal basis of R𝑁 𝑢1, … , 𝑢𝑁 so that 𝑢𝑁 = 𝑣𝑁 .

Any vector 𝑣 ∈ R𝑁 is a linear combination

𝑣 =
𝑁

∑
𝑖=1

𝑎𝑖𝑢𝑖
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and, since the 𝑢𝑖 are orthonormal, the coefficients can be calculated as 𝑎𝑖 = (𝑢𝑖 ⋅ 𝑣).

Using this, we can find the matrix 𝐷′ of the linear map defined by our original matrix 𝐷 in this
new basis. By definition, if 𝑑′

𝑖𝑗 are the entries of 𝐷′, then

𝐷𝑢𝑖 =
𝑁

∑
𝑗=1

𝑑′
𝑖𝑗𝑢𝑗

and so

𝑑′
𝑖𝑗 = 𝑢𝑗 ⋅ 𝐷𝑢𝑖 = 𝑢⊺

𝑗 𝐷𝑢𝑖.

Since 𝐷 is symmetric, 𝑢⊺
𝑗 𝐷𝑢𝑖 = 𝑢⊺

𝑖 𝐷𝑢𝑗 and so 𝑑′
𝑖𝑗 = 𝑑′

𝑗𝑖. In other words, the matrix 𝐷′ is still
symmetric. Furthermore,

𝑑′
𝑁𝑖 = 𝑢𝑖 ⋅ 𝐷𝑢𝑁 = 𝑢𝑖 ⋅ 𝜆𝑢𝑁 = 𝜆(𝑢𝑖 ⋅ 𝑢𝑁)

since 𝑢𝑁 = 𝑣𝑁 . Since the 𝑢𝑖 are an orthonormal basis, we see that 𝑑′
𝑖𝑁 = 0 unless 𝑖 = 𝑁 , and

𝑑′
𝑁𝑁 = 𝜆.

In other words, the matrix 𝐷′ has a block form:

𝐷′ =
⎛⎜⎜⎜⎜
⎝

∗ ∗ ⋯ ∗ 0
⋮ ⋮ ⋱ ⋮ ⋮
∗ ∗ ⋯ ∗ 0
0 0 ⋯ 0 𝜆

⎞⎟⎟⎟⎟
⎠

and the block denoted by ∗’s is symmetric. If we call that block 𝐷∗, the inductive hypothesis tells
us that the symmetric matrix 𝐷∗ is diagonalizable, so it has a basis of eigenvectors 𝑢′

1, … , 𝑢′
𝑁−1

with eigenvalues 𝜆1, … , 𝜆𝑁−1; this gives us a basis for the subspace of R𝑁 spanned by 𝑢1, … , 𝑢𝑁−1
which, together with 𝑢𝑁 gives us a basis of R𝑁 consisting of eigenvectors of 𝐷.

This finishes the proof of Property 2.

For property 3, compute
𝑣⊺𝐷𝑤 = 𝜆′(𝑣 ⋅ 𝑤) = 𝑤⊺𝐷𝑣 = 𝜆(𝑤 ⋅ 𝑣).

Since 𝜆 ≠ 𝜆′, we must have 𝑣 ⋅ 𝑤 = 0.

For property 4, if the eigenvalues are all distinct, this is a consequence of property 2 – you have 𝑁
eigenvectors, scaled to length 1, for different eigenvalues, and by 2 they are orthogonal. So the only
complication is the case where some eigenvalues are repeated. If 𝜆 occurs 𝑟 times, then you have
𝑟 linearly independent vectors 𝑢1, … , 𝑢𝑟 that span the 𝜆 eigenspace. The Gram-Schmidt process
allows you to construct an orthonormal set that spans this eigenspace, and while this orthonormal
set isn’t unique, any one of them will do.

43



2 Principal Component Analysis

For property 5, let 𝑒𝑖 be the column vector that is zero except for a 1 in position 𝑖. The product
𝑒⊺

𝑗 𝐷𝑒𝑖 = 𝑑𝑖𝑗. Let’s write 𝑒𝑖 and 𝑒𝑗 in terms of the orthonormal basis 𝑢1, … 𝑢𝑁 :

𝑒𝑖 =
𝑁

∑
𝑘=1

(𝑒𝑖 ⋅ 𝑢𝑘)𝑢𝑘 and 𝑒𝑗 =
𝑁

∑
𝑘=1

(𝑒𝑗 ⋅ 𝑢𝑘)𝑢𝑘.

Using this expansion, we compute 𝑒⊺
𝑗 𝐷𝑒𝑖 in a more complicated way:

𝑒⊺
𝑗 𝐷𝑒𝑖 =

𝑁
∑
𝑟=1

𝑁
∑
𝑠=1

(𝑒𝑗 ⋅ 𝑢𝑟)(𝑒𝑖 ⋅ 𝑢𝑠)(𝑢⊺
𝑟 𝐷𝑢𝑠).

But 𝑢⊺
𝑟 𝐷𝑢𝑠 = 𝜆𝑠(𝑢𝑟 ⋅ 𝑢𝑠) = 0 unless 𝑟 = 𝑠, in which case it equals 𝜆𝑟, so

𝑒⊺
𝑗 𝐷𝑒𝑖 =

𝑁
∑
𝑟=1

𝜆𝑟(𝑒𝑗 ⋅ 𝑢𝑟)(𝑒𝑖 ⋅ 𝑢𝑟).

On the other hand,

𝑃 ⊺𝑒𝑖 =
⎡
⎢⎢
⎣

(𝑒𝑖 ⋅ 𝑢1)
(𝑒𝑖 ⋅ 𝑢2)

⋮
(𝑒𝑖 ⋅ 𝑢𝑁)

⎤
⎥⎥
⎦

and

Λ𝑃 ⊺𝑒𝑖 =
⎡
⎢⎢
⎣

𝜆1(𝑒𝑖 ⋅ 𝑢𝑖)
𝜆2(𝑒𝑖 ⋅ 𝑢2)

⋮
𝜆𝑁(𝑒𝑖 ⋅ 𝑢𝑁)

⎤
⎥⎥
⎦

Therefore the 𝑖, 𝑗 entry of 𝑃Λ𝑃 ⊺ is

(𝑒⊺
𝑗 𝑃)Λ(𝑃 ⊺𝑒𝑗) =

𝑁
∑
𝑟=1

𝜆𝑟(𝑒𝑖 ⋅ 𝑢𝑟)(𝑒𝑗 ⋅ 𝑢𝑟) = 𝑑𝑖𝑗

so the two matrices 𝐷 and 𝑃Λ𝑃 ⊺ are in fact equal.

Exercises:

1. Prove the rest of the first lemma in Section 2.4.2.

2. Prove the Gram-Schmidt Process has the claimed properties in Section 2.5.1.
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3.1 Introduction

Probability theory is one of the three central mathematical tools in machine learning, along with
multivariable calculus and linear algebra. Tools from probability allow us to manage the uncertainty
inherent in data collected from real world experiments, and to measure the reliability of predictions
that we might make from that data. In these notes, we will review some of the basic terminology
of probability and introduce Bayesian inference as a technique in machine learning problems.

This will only be a superficial introduction to ideas from probability. For a thorough treatment,
see this open-source introduction to probability. For a more applied emphasis, I recommend the
excellent online course Probabilistic Systems Analysis and Applied Probability and its associated
text [2].

3.2 Probability Basics

The theory of probability begins with a set 𝑋 of possible events or outcomes, together with a
“probability” function 𝑃 on (certain) subsets of 𝑋 that measures “how likely” that combination of
events is to occur.

The set 𝑋 can be discrete or continuous. For example, when flipping a coin, our set of possible
events would be the discrete set {𝐻, 𝑇 } corresponding to the possible events of flipping heads or
tails. When measuring the temperature using a thermometer, our set of possible outcomes might
be the set of real numbers, or perhaps an interval in ℝ. The thermometer’s measurement is random
because it is affected by, say, electronic noise, and so its reading is the true temperature perturbed
by a random amount.

The values of 𝑃 are between 0, meaning that the event will not happen, and 1, meaning that it
is certain to occur. As part of our set up, we assume that the total chance of some event from 𝑋
occurring is 1, so that 𝑃(𝑋) = 1; and the chance of “nothing” happening is zero, so 𝑃(∅) = 0. And
if 𝑈 ⊂ 𝑋 is some collection, then 𝑃(𝑈) is the chance of an event from 𝑈 occurring.

The last ingredient of this picture of probability is additivity. Namely, we assume that if 𝑈 and 𝑉
are subsets of 𝑋 that are disjoint, then

𝑃(𝑈 ∪ 𝑉 ) = 𝑃(𝑈) + 𝑃(𝑉 ).
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Even more generally, we assume that this holds for (countably) infinite collections of disjoint subsets
𝑈1, 𝑈2, …, where

𝑃(𝑈1 ∪ 𝑈2 ∪ ⋯) =
∞

∑
𝑖=1

𝑃(𝑈𝑖)

Definition: The combination of a set 𝑋 of possible outcomes and a probability function 𝑃 on
subsets of 𝑋 that satisfies 𝑃(𝑋) = 1, 0 ≤ 𝑃(𝑈) ≤ 1 for all 𝑈 , and is additive on countable disjoint
collections of subsets of 𝑋 is called a (naive) probability space. 𝑋 is called the sample space and
the subsets of 𝑋 are called events.

Warning: The reason for the term “naive” in the above definition is that, if 𝑋 is an uncountable
set such as the real numbers ℝ, then the conditions in the definition are self-contradictory. This
is a deep and rather surprising fact. To make a sensible definition of a probability space, one has
to restrict the domain of the probability function 𝑃 to certain subsets of 𝑋. These ideas form
the basis of the mathematical subject known as measure theory. In these notes we will work with
explicit probability functions and simple subsets such as intervals that avoid these technicalities.

3.2.1 Discrete probability examples

The simplest probability space arises in the analysis of coin-flipping. As mentioned earlier, the set 𝑋
contains two elements {𝐻, 𝑇 }. The probability function 𝑃 is determined by its value 𝑃({𝐻}) = 𝑝,
where 0 ≤ 𝑝 ≤ 1, which is the chance of the coin yielding a “head”. Since 𝑃(𝑋) = 1, we have
𝑃({𝑇 }) = 1 − 𝑝.
Other examples of discrete probability spaces arise from dice-rolling and playing cards. For example,
suppose we roll two six-sided dice. There are 36 possible outcomes from this experiment, each
equally likely. If instead we consider the sum of the two values on the dice, our outcomes range
from 2 to 12 and the probabilities of these outcomes are given by

2 3 4 5 6 7 8 9 10 11 12
1/36 1/18 1/12 1/9 5/36 1/6 5/36 1/9 1/12 1/18 1/36

A traditional deck of 52 playing cards contains 4 aces. Assuming that the chance of drawing any
card is the same (and is therefore equal to 1/52), the probability of drawing an ace is 4/52 = 1/13
since

𝑃({𝐴♣, 𝐴♠, 𝐴♡, 𝐴♢}) = 4𝑃({𝐴♣}) = 4/52 = 1/13

3.2.2 Continuous probability examples

When the set 𝑋 is continuous, such as in the temperature measurement, we measure 𝑃(𝑈), where
𝑈 ⊂ 𝑋, by giving a “probability density function” 𝑓 ∶ 𝑋 → ℝ and declaring that

𝑃(𝑈) = ∫
𝑈

𝑓(𝑥)𝑑𝑋.
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Notice that our function 𝑓(𝑥) has to satisfy the condition

𝑃(𝑋) = ∫
𝑋

𝑓(𝑥)𝑑𝑋 = 1.

For example, in our temperature measurement example, suppose the “true” outside temperature is
𝑡0, and our thermometer gives a reading 𝑡. Then a good model for the random error is to assume
that the error 𝑥 = 𝑡 − 𝑡0 is governed by the density function

𝑓𝜎(𝑥) = 1
𝜎

√
2𝜋𝑒−𝑥2/2𝜎2

where 𝜎 is a parameter. In a continuous situation such as this one, the probability of any particular
outcome in 𝑋 is zero since

𝑃({𝑡}) = ∫
𝑡

𝑡
𝑓𝜎(𝑥)𝑑𝑥 = 0

Still, the shape of the density function does tell you where the values are concentrated – values
where the density function is larger are more likely than those where it is smaller.

With this density function, and x=𝑡 − 𝑡0, the error in our measurement is given by

𝑃(|𝑡 − 𝑡0| < 𝛿) = ∫
𝛿

−𝛿

1
𝜎

√
2𝜋𝑒−𝑥2/2𝜎2𝑑𝑥 (3.1)

The parameter 𝜎 (called the standard deviation) controls how tightly the thermometer’s measure-
ment is clustered around the true value 𝑡0; when 𝜎 is large, the measurements are scattered widely,
when small, they are clustered tightly. See Figure 3.1.

3.3 Conditional Probability and Bayes Theorem

The theory of conditional probability gives a way to study how partial information about an event
informs us about the event as a whole. For example, suppose you draw a card at random from a
deck. As we’ve seen earlier, the chance that card is an ace is 1/13. Now suppose that you learn
that (somehow) that the card is definitely not a jack, king, or queen. Since there are 12 cards in
the deck that are jacks, kings, or queens, the card you’ve drawn is one of the remaining 40 cards,
which includes 4 aces. Thus the chance you are holding an ace is now 4/40 = 1/10.
In terms of notation, if 𝐴 is the event “my card is an ace” and 𝐵 is the event “my card is not a
jack, queen, or king” then we say that the probability of 𝐴 given 𝐵 is 1/10. The notation for this
is

𝑃(𝐴|𝐵) = 1/10.

More generally, if 𝐴 and 𝐵 are events from a sample space 𝑋, and 𝑃(𝐵) > 0, then

𝑃(𝐴|𝐵) = 𝑃(𝐴 ∩ 𝐵)
𝑃(𝐵) ,

so that 𝑃 (𝐴|𝐵) measures the chance that 𝐴 occurs among those situations in which 𝐵 occurs.
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Figure 3.1: Normal Density

48



3.3 Conditional Probability and Bayes Theorem

3.3.1 Bayes Theorem

Bayes theorem is a foundational result in probability.

Theorem: Bayes Theorem says

𝑃(𝐴|𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴)
𝑃(𝐵) .

If we use the definition of conditional probability given above, this is straightforward:

𝑃(𝐵|𝐴)𝑃(𝐴)
𝑃(𝐵) = 𝑃(𝐵 ∩ 𝐴)

𝑃(𝐵) = 𝑃(𝐴|𝐵).

3.3.2 An example

To illustrate conditional probability, let’s consider what happens when we administer the most
reliable COVID-19 test, the PCR test, to an individual drawn from the population at large. There
are two possible test results (positive and negative) and two possible true states of the person being
tested (infected and not infected). Suppose I go to the doctor and get a COVID test which comes
back positive. What is the probability that I actually have COVID?

Let’s let 𝑆 and 𝑊 stand for infected (sick) and not infected (well), and let +/− stand for test
positive or negative. Note that there are four possible outcomes of our experiment:

• test positive and infected (S+) – this is a true positive.
• test positive and not infected (W+) – this is a false positive.
• test negative and infected (S-) – this is a false negative.
• test negative and not infected (W-) – this is a true negative.

The CDC says that the chance of a false positive – that is, the percentage of samples from well
people that incorrectly yields a positive result – is about one-half of one percent, or 5 in 1000.

In other words,
𝑃(+|𝑊) = 𝑃(𝑊+)/𝑃(𝑊) = 5/1000 = 1/200

On the other hand, the CDC tells us that chance of a false negative is 1 in 4, so

𝑃(−|𝑆) = 𝑃(𝑆−)/𝑃(𝑆) = .25.

Since 𝑃(𝑆−) + 𝑃 (𝑆+) = 𝑃(𝑆). since every test is either positive or negative, we have

𝑃(+|𝑆) = .75.

Suppose furthermore that the overall incidence of COVID-19 in the population is p. In other words,
𝑃(𝑆) = 𝑝 so 𝑃 (𝑊) = 1 − 𝑝. Then

𝑃(𝑆+) = 𝑃(𝑆)𝑃(+|𝑆) = .75𝑝
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3 Probability and Bayes Theorem

and
𝑃(𝑊+) = 𝑃(𝑊)𝑃(+|𝑊) = .005(1 − 𝑝).

Putting these together we get 𝑃(+) = .005 + .745𝑝

What I’m interested in is 𝑃(𝑆|+) – the chance that I’m sick, given that my test result was positive.
By Bayes Theorem,

𝑃(𝑆|+) = 𝑃(+|𝑆)𝑃(𝑆)
𝑃(+) = .75𝑝/(.005 + .745𝑝) = 750𝑝

5 + 745𝑝 .

As Figure 3.2 shows, if the population incidence is low then a positive test is far from conclusive.
Indeed, if the overall incidence of COVID is one percent, then a positive test result only implies a
60 percent chance that I am in fact infected.

Just to fill out the picture, we have

𝑃(−) = 𝑃(𝑆−) + 𝑃(𝑊−) = (𝑃(𝑆) − 𝑃(𝑆+)) + (𝑃(𝑊) − 𝑃(𝑊+))

which yields
𝑃(−) = 1 − .005 + .005𝑝 − .75𝑝 = .995 − .745𝑝.

Using Bayes Theorem, we obtain

𝑃(𝑆|−) = 𝑃(−|𝑆)𝑃(𝑆)
𝑃(−) = .25𝑝/(.995 − .745𝑝) = 250𝑝

995 − 745𝑝 .

In this case, even though the false negative rate is pretty high (25 percent) overall, if the population
incidence is one percent, then the probability that you’re sick given a negative result is only about
.25 percent. So negative results are very likely correct!

3.4 Independence

Independence is one of the fundamental concepts in probability theory. Conceptually, two events
are independent if the occurrence of one has does not influence the likelihood of the occurrence of
the other. For example, successive flips of a coin are independent events, since the result of the
second flip doesn’t have anything to do with the result of the first. On the other hand, whether or
not it rains today and tomorrow are not independent events, since the weather tomorrow depends
(in a complicated way) on the weather today.

We can formalize this idea of independence using the following definition.

Definition: Let 𝑋 be a sample space and let 𝐴 and 𝐵 be two events. Then 𝐴 and 𝐵 are
independent if 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵). Equivalently, 𝐴 and 𝐵 are independent if 𝑃(𝐴|𝐵) = 𝑃(𝐴)
and 𝑃(𝐵|𝐴) = 𝑃 (𝐵).
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Figure 3.2: P(S|+) vs P(S)
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3.4.1 Examples

3.4.1.1 Coin Flipping

Suppose our coin has a probability of heads given by a real number 𝑝 between 0 and 1, and we
flip our coin 𝑁 times. What is the chance of gettting 𝑘 heads, where 0 ≤ 𝑘 ≤ 𝑁? Any particular
sequence of heads and tails containing 𝑘 heads and 𝑁 − 𝑘 tails has probability

𝑃(a particular sequence of 𝑘 heads among 𝑁 flips) = 𝑝𝑘(1 − 𝑝)𝑁−𝑘.

In addition, there are (𝑁
𝑘 ) sequences of heads and tails containing 𝑘 heads. Thus the probability

𝑃(𝑘, 𝑁) of 𝑘 heads among 𝑁 flips is

𝑃(𝑘, 𝑁) = (𝑁
𝑘 )𝑝𝑘(1 − 𝑝)𝑁−𝑘. (3.2)

Notice that the binomial theorem gives us ∑𝑁
𝑘=0 𝑃(𝑘, 𝑁) = 1 which is a reassuring check on our

work.

The probability distribution on the set 𝑋 = {0, 1, … , 𝑁} given by 𝑃(𝑘, 𝑁) is called the binomial
distribution with parameters 𝑁 and 𝑝.

3.4.1.2 A simple ‘mixture’

Now let’s look at an example of events that are not independent. Suppose that we have two coins,
with probabilities of heads 𝑝1 and 𝑝2 respectively; and assume these probabilities are different. We
play the a game in which we first choose one of the two coins (with equal chance) and then flip
it twice. Is the result of the second flip independent of the first? In other words, is 𝑃(𝐻𝐻) =
𝑃(𝐻)2?

This type of situation is called a ‘mixture distribution’ because the probability of a head is a
“mixture” of the probability coming from the two different coins.

The chance that the first flip is a head is (𝑝1 + 𝑝2)/2 because it’s the chance of picking the first
coin, and then getting a head, plus the chance of picking the second, and then getting a head. The
chance of getting two heads in a row is (𝑝2

1 + 𝑝2
2)/2 because it’s the chance, having picked the first

coin, of getting two heads, plus the chance, having picked the second, of getting two heads.

Since
𝑝2

1 + 𝑝2
2

2 ≠ (𝑝1 + 𝑝2
2 )

2

we see these events are not independent.

In terms of conditional probabilities, the chance that the second flip is a head, given that the first
flip is, is computed as:

𝑃(𝐻𝐻|𝐻) = 𝑝2
1 + 𝑝2

2
𝑝1 + 𝑝2

.
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3.4 Independence

From the Cauchy-Schwartz inequality one can show that

𝑝2
1 + 𝑝2

2
𝑝1 + 𝑝2

> 𝑝1 + 𝑝2
2 .

Why should this be? Why should the chance of getting a head on the second flip go up given that
the first flip was a head? One way to think of this is that the first coin flip contains a little bit of
information about which coin we chose. If, for example 𝑝1 > 𝑝2, and our first flip is heads, then
it’s just a bit more likely that we chose the first coin. As a result, the chance of getting another
head is just a bit more likely than if we didn’t have that information. We can make this precise by
considering the conditional probability 𝑃(𝑝 = 𝑝1|𝐻) that we’ve chosen the first coin given that we
flipped a head. From Bayes’ theorem:

𝑃 (𝑝 = 𝑝1|𝐻) = 𝑃(𝐻|𝑝 = 𝑝1)𝑃 (𝑝 = 𝑝1)
𝑃 (𝐻) = 𝑝1

𝑝1 + 𝑝2
= 1

1 + (𝑝2/𝑝1) > 1
2

since (1 + (𝑝2/𝑝1)) < 2.

Exercise: Push this argument a bit further. Let 𝑝1 = max(𝑝1, 𝑝2) Let 𝑃𝑁 be the conditional
probability of getting heads assuming that the first 𝑁 flips were heads. Show that 𝑃𝑁 → 𝑝1 as
𝑁 → ∞. All those heads piling up make it more and more likely that you’re flipping the first coin
and so the chance of getting heads approaches 𝑝1.

3.4.1.3 An example with a continuous distribution

Suppose that we return to our example of a thermometer which measures the ambient temperature
with an error that is distributed according to the normal distribution, as in Equation 3.1. Suppose
that we make 10 independent measurements 𝑡1, … , 𝑡10 of the true temperature 𝑡0. What can we
say about the distribution of these measurements?

In this case, independence means that

𝑃 = 𝑃 (|𝑡1 − 𝑡0| < 𝛿, |𝑡2 − 𝑡0| < 𝛿, …) = 𝑃(|𝑡1 − 𝑡0| < 𝛿)𝑃 (|𝑡2 − 𝑡0| < 𝛿) ⋯ 𝑃(|𝑡10 − 𝑡0| < 𝛿)

and therefore

𝑃 = ( 1
𝜎

√
2𝜋)

10
∫

𝛿

−𝛿
⋯ ∫

𝛿

−𝛿
𝑒−(∑10

𝑖=1 𝑥2
𝑖 )/2𝜎2𝑑𝑥1 ⋯ 𝑑𝑥10

One way to look at this is that the vector e of errors (|𝑡1 −𝑡0|, … , |𝑡10 −𝑡0|) is distributed according
to a multivariate gaussian distribution:

𝑃(e ∈ 𝑈) = ( 1
𝜎

√
2𝜋)

10
∫

𝑈
𝑒−‖𝑥‖2/2𝜎2𝑑x (3.3)

where 𝑈 is a region in R10.
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3 Probability and Bayes Theorem

The multivariate gaussian can also describe situations where independence does not hold. For
simplicity, let’s work in two dimensions and consider the probability density on R2 given by

𝑃(e ∈ 𝑈) = 𝐴 ∫
𝑈

𝑒−(𝑥2
1−𝑥1𝑥2+𝑥2

2)/2𝜎2𝑑x.

where the constant 𝐴 is chosen so that

𝐴 ∫
R2

𝑒−(𝑥2
1−𝑥1𝑥2+𝑥2

2)/2𝜎2𝑑x = 1.

This density function as a “bump” concentrated near the origin in R2, and its level curves are a
family of ellipses centered at the origin. See Figure 3.3 for a plot of this function with 𝜎 = 1.

Figure 3.3: Multivariate Gaussian

In this situation we can look at the conditional probability of the first variable given the second,
and see that the two variables are not independent. Indeed, if we fix 𝑥2, then the distribution of 𝑥1
depends on our choice of 𝑥2. We could see this by a calculation, or we can just look at the graph:
if 𝑥2 = 0, then the most likely values of 𝑥1 cluster near zero, while if 𝑥2 = 1, then the most likely
values of 𝑥1 cluster somewhere above zero.
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3.5 Random Variables, Mean, and Variance

Typically, when we are studying a random process, we aren’t necessarily accessing the underlying
events, but rather we are making measurements that provide us with some information about the
underlying events. For example, suppose our sample space 𝑋 is the set of throws of a pair of dice,
so 𝑋 contains the 36 possible combinations that can arise from the throws. What we are actually
interested is the sum of the values of the two dice – that’s our “measurement” of this system. This
rather vague notion of a measurement of a random system is captured by the very general idea of
a random variable.

Definition: Let 𝑋 be a sample space with probability function 𝑃 . A random variable on 𝑋 is a
function 𝑓 ∶ 𝑋 → ℝ.
Given a random variable 𝑓 , we can use the probability measure to decide how likely 𝑓 is to take a
particular value, or values in a particular set by the formula

𝑃(𝑓(𝑥) ∈ 𝑈) = 𝑃(𝑓−1(𝑈))

In the dice rolling example, the random variable 𝑆 that assigns their sum to the pair of values
obtained on two dice is a random variable. Those values lie between 2 and 12 and we have

𝑃(𝑆 = 𝑘) = 𝑃(𝑆−1({𝑘})) = 𝑃({(𝑥, 𝑦) ∶ 𝑥 + 𝑦 = 𝑘})

where (𝑥, 𝑦) runs through {1, 2, … , 6}2 representing the two values and 𝑃((𝑥, 𝑦)) = 1/36 since all
throws are equally likely.

Let’s look at a few more examples, starting with what is probably the most fundamental of all.

Definition: Let 𝑋 be a sample space with two elements, say 𝐻 and 𝑇 , and suppose that 𝑃(𝐻) = 𝑝
for some 0 ≤ 𝑝 ≤ 1. Then the random variable that satisfies 𝑓(𝐻) = 1 and 𝑓(𝑇 ) = 0 is called a
Bernoulli random variable with parameter 𝑝.
In other words, a Bernoulli random variable gives the value 1 when a coin flip is heads, and 0 for
tails.

Now let’s look at what we earlier called the binomial distribution.

Definition: Let 𝑋 be a sample space consisting of strings of 𝐻 and 𝑇 of length 𝑁 , with the
probability of a particular string 𝑆 with 𝑘 heads and 𝑁 − 𝑘 tails given by

𝑃(𝑆) = 𝑝𝑘(1 − 𝑝)𝑁−𝑘

for some 0 ≤ 𝑝 ≤ 1. In other words, 𝑋 is the sample space consisting of 𝑁 independent flips of a
coin with probability of heads given by 𝑝.
Let 𝑓 ∶ 𝑋 → ℝ be the function which counts the number of 𝐻 in the string. We can express 𝑓 in
terms of Bernoulli random variables; indeed,

𝑓 = 𝑋1 + … + 𝑋𝑁

where each 𝑋𝑖 is a Bernoulli random variable with parameter 𝑝.
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Now
𝑃(𝑓 = 𝑘) = (𝑁

𝑘 )𝑝𝑘(1 − 𝑝)𝑁−𝑘

since 𝑓−1({𝑘}) is the number of elements in the subset of strings of 𝐻 and 𝑇 of length 𝑁 containing
exactly 𝑘 𝐻’s. This is our old friend the binomial distribution. So a binomial distribution is the
distribution of the sum of 𝑁 independent Bernoulli random variables.

For an example with a continuous random variable, suppose our sample space is R2 and the
probability density is the simple multivariate normal

𝑃(x ∈ 𝑈) = ( 1√
2𝜋)

2
∫

𝑈
𝑒−‖x‖2/2𝑑x.

Let 𝑓 be the random variable 𝑓(x) = ‖x‖. The function 𝑓 measures the Euclidean distance of a
randomly drawn point from the origin. The set

𝑈 = 𝑓−1([0, 𝑟)) ⊆ R2

is the circle of radius 𝑟 in R2. The probability that a randomly drawn point lies in this circle is

𝑃(𝑓 < 𝑟) = ( 1√
2𝜋)

2
∫

𝑈
𝑒−‖x‖2/2𝑑x.

We can actually evaluate this integral in closed form by using polar coordinates. We obtain

𝑃(𝑓 < 𝑟) = ( 1√
2𝜋)

2
∫

2𝜋

𝜃=0
∫

𝑟

𝜌=0
𝑒−𝜌2/2𝜌𝑑𝜌𝑑𝜃.

Since
𝑑
𝑑𝜌𝑒−𝜌2/2 = −𝜌𝑒−𝜌2/2

we have

𝑃(𝑓 < 𝑟) = − 1
2𝜋𝜃𝑒−𝜌2/2|2𝜋

𝜃=0|𝑟𝜌=0

= 1 − 𝑒−𝑟2/2

The probability density associated with this random variable is the derivative of 1 − 𝑒−𝑟2/2

𝑃(𝑓 ∈ [𝑎, 𝑏]) = ∫
𝑏

𝑟=𝑎
𝑟𝑒−𝑟2/2𝑑𝑟

as you can see by the fundamental theorem of calculus. This density is drawn in Figure 3.4 where
you can see that the points are clustered at a distance of 1 from the origin.
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Figure 3.4: Density of the Norm
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3.5.1 Independence and Random Variables

We can extend the notion of independence from events to random variables.

Definition: Let 𝑓 and 𝑔 be two random variables on a sample space 𝑋 with probability 𝑃 . Then
𝑓 and 𝑔 are independent if, for all intervals 𝑈 and 𝑉 in ℝ, the events 𝑓−1(𝑈) and 𝑔−1(𝑉 ) are
independent.

For discrete probability distributions, this means that, for all 𝑎, 𝑏 ∈ ℝ,

𝑃(𝑓 = 𝑎 and 𝑔 = 𝑏) = 𝑃(𝑓 = 𝑎)𝑃(𝑔 = 𝑏).

For continous probability distributions given by a density function 𝑃(𝑥), independence can be more
complicated to figure out.

3.5.2 Expectation, Mean and Variance

The most fundamental tool in the study of random variables is the concept of “expectation”, which
is a fancy version of average. The word “mean” is a synonym for expectation – the mean of a
random variable is the same as its expectation or “expected value.”

Definition: Let 𝑋 be a sample space with probability measure 𝑃 . Let 𝑓 ∶ 𝑋 → ℝ be a random
variable. Then the expectation or expected value 𝐸[𝑓] of 𝑓 is

𝐸[𝑓] = ∫
𝑋

𝑓(𝑥)𝑑𝑃 .

More specifically, if 𝑋 is discrete, then

𝐸[𝑓] = ∑
𝑥∈𝑋

𝑓(𝑥)𝑃(𝑥)

while if 𝑋 is continuous with probability density function 𝑝(𝑥)𝑑𝑥 then

𝐸[𝑓] = ∫
𝑋

𝑓(𝑥)𝑝(𝑥)𝑑𝑥.

If 𝑓 is a Bernoulli random variable with parameter 𝑝, then

𝐸[𝑓] = 1 ⋅ 𝑝 + 0 ⋅ (1 − 𝑝) = 𝑝

If 𝑓 is a binomial random variable with parameters 𝑝 and 𝑁 , then

𝐸[𝑓] =
𝑁

∑
𝑖=0

𝑖(𝑁
𝑖 )𝑝𝑖(1 − 𝑝)𝑁−𝑖

One can evaluate this using some combinatorial tricks, but it’s easier to apply this basic fact about
expectations.
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Proposition: Expectation is linear: 𝐸[𝑎𝑋 + 𝑏𝑌 ] = 𝑎𝐸[𝑋] + 𝑏𝐸[𝑌 ] for random variables 𝑋, 𝑌 and
constants 𝑎 and 𝑏.

The proof is an easy consequence of the expression of 𝐸 as a sum (or integral).

Since a binomial random variable 𝑍 with parameters 𝑁 and 𝑝 is the sum of 𝑁 Bernoulli random
variables, its expectation is

𝐸[𝑋1 + ⋯ + 𝑋𝑁 ] = 𝑁𝑝.

A more sophisticated property of expectation is that it is multiplicative when the random variables
are independent.

Proposition: Let 𝑓 and 𝑔 be two independent random variables. Then 𝐸[𝑓𝑔] = 𝐸[𝑓]𝐸[𝑔].

Proof: Let’s suppose that the sample space 𝑋 is discrete. By definition,

𝐸[𝑓] = ∑
𝑥∈𝑋

𝑓(𝑥)𝑃(𝑥)

and we can rewrite this as
𝐸[𝑓] = ∑

𝑎∈R
𝑎𝑃({𝑥 ∶ 𝑓(𝑥) = 𝑎}).

Let 𝑍 ⊂ ℝ be the range of 𝑓 . Then

𝐸[𝑓𝑔] = ∑
𝑎∈𝑍

𝑎𝑃({𝑥 ∶ 𝑓𝑔(𝑥) = 𝑎})

= ∑
𝑎∈𝑍

∑
(𝑢,𝑣)∈ Z2

𝑢𝑣=𝑎

𝑎𝑃({𝑥 ∶ 𝑓(𝑥) = 𝑢 and 𝑔(𝑥) = 𝑣})

= ∑
𝑎∈𝑍

∑
Z2

𝑢𝑣=𝑎

𝑢𝑣𝑃({𝑥 ∶ 𝑓(𝑥) = 𝑢})𝑃({𝑥 ∶ 𝑔(𝑥) = 𝑣})

= ∑
𝑢∈𝑍

𝑢𝑃({𝑥 ∶ 𝑓(𝑥) = 𝑢}) ∑
𝑣∈𝑍

𝑣𝑃({𝑥 ∶ 𝑓(𝑥) = 𝑣})

= 𝐸[𝑓]𝐸[𝑔]

3.5.2.1 Variance

The variance of a random variable is a measure of its dispersion around its mean.

Definition: Let 𝑓 be a random variable. Then the variance is the expression

𝜎2(𝑓) = 𝐸[(𝑓 − 𝐸[𝑓])2] = 𝐸[𝑓2] − (𝐸[𝑓])2

The square root of the variance is called the “standard deviation.”

The two formulae for the variance arise from the calculation

𝐸[(𝑓 − 𝐸[𝑓])2] = 𝐸[(𝑓2 − 2𝑓𝐸[𝑓] + 𝐸[𝑓]2)] = 𝐸[𝑓2] − 2𝐸[𝑓]2 + 𝐸[𝑓]2 = 𝐸[𝑓2] − 𝐸[𝑓]2.
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To compute the variance of the Bernoulli random variable 𝑓 with parameter 𝑝, we first compute

𝐸[𝑓2] = 𝑝(1)2 + (1 − 𝑝)02 = 𝑝.

Since 𝐸[𝑓] = 𝑝, we have
𝜎2(𝑓) = 𝑝 − 𝑝2 = 𝑝(1 − 𝑝).

If 𝑓 is the binomial random variable with parameters 𝑁 and 𝑝, we can again use the fact that 𝑓 is
the sum of 𝑁 Bernoulli random variables 𝑋1 + ⋯ + 𝑋𝑛 and compute

𝐸[(∑
𝑖

𝑋𝑖)2] − 𝐸[∑
𝑖

𝑋𝑖]2 = 𝐸[∑
𝑖

𝑋2
𝑖 + ∑

𝑖,𝑗
𝑋𝑖𝑋𝑗] − 𝑁2𝑝2

= 𝑁𝑝 + 𝑁(𝑁 − 1)𝑝2 − 𝑁2𝑝2

= 𝑁𝑝(1 − 𝑝)

where we have used the fact that the square 𝑋2 of a Bernoulli random variable is equal to 𝑋.

For a continuous example, suppose that we consider a sample space ℝ with the normal probability
density

𝑃(𝑥) = 1
𝜎

√
2𝜋𝑒−𝑥2/2𝜎2𝑑𝑥.

The mean of the random variable 𝑥 is

𝐸[𝑥] = 1
𝜎

√
2𝜋 ∫

∞

−∞
𝑥𝑒−𝑥2/2𝜎2𝑑𝑥 = 0

since the function being integrated is odd. The variance is

𝐸[𝑥2] = 1
𝜎

√
2𝜋 ∫

∞

−∞
𝑥2𝑒−𝑥2/2𝜎2𝑑𝑥.

The trick to evaluating this integral is to consider the derivative:

𝑑
𝑑𝜎 [ 1

𝜎
√

2𝜋 ∫
∞

−∞
𝑒−𝑥2/(2𝜎2)𝑑𝑥] = 0

where the result is zero since the quantity being differentiated is a constant (namely 1). Sorting
through the resulting equation leads to the fact that

𝐸[𝑥2] = 𝜎2

so that the 𝜎2 parameter in the normal distribution really is the variance of the associated random
variable.
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3.6 Models and Likelihood

A statistical model is a mathematical model that accounts for data via a process that incorporates
random behavior in a structured way. We have seen several examples of such models in our
discussion so far. For example, the Bernoulli process that describes the outcome of a series of coin
flips as independent choices of heads or tails with probability 𝑝 is a simple statistical model; our
more complicated mixture model in which we choose one of two coins at random and then flip that
is a more complicated model.
Our description of the variation in temperature measurements as arising from perturbations from
the true temperature by a normally distributed amount is another example of a statistical model,
this one involving a continuous random variable.

When we apply a mathematical model to understand data, we often have a variety of parameters
in the model that we must adjust to get the model to best “fit” the observed data. For example,
suppose that we observe the vibrations of a block attached to a spring. We know that the motion
is governed by a second order linear differential equation, but the dynamics depend on the mass
of the block, the spring constant, and the damping coefficient. By measuring the dynamics of the
block over time, we can try to work backwards to figure out these parameters, after which we will
be able to predict the block’s motion into the future.

3.6.1 Maximum Likelihood (Discrete Case)

To see this process in a statistical setting, let’s return to the simple example of a coin flip. The
only parameter in our model is the probability 𝑝 of getting heads on a particular flip. Suppose that
we flip the coin 100 times and get 55 heads and 45 tails. What can we say about 𝑝?
We will approach this question via the “likelihood” function for our data. We ask: for a particular
value of the parameter 𝑝, how likely is this outcome? From Equation 3.2 we have

𝑃(55𝐻, 45𝑇 ) = (100
55 )𝑝55(1 − 𝑝)45.

This function is plotted in Figure 3.5. As you can see from that plot, it is extremely unlikely that
we would have gotten 55 heads if 𝑝 was smaller than .4 or greater than .7, while the most likely
value of 𝑝 occurs at the maximum value of this function, and a little calculus tells us that this
point is where 𝑝 = .55. This most likely value of 𝑝 is called the maximum likelihood estimate for
the parameter 𝑝.

3.6.2 Maximum Likelihood (Continuous Case)

Now let’s look at our temperature measurements where the error is normally distributed with
variance parameter 𝜎2. As we have seen earlier, the probability density of errors x = (𝑥1, … , 𝑥𝑛)
of 𝑛 independent measurements is

𝑃(x) = ( 1
𝜎

√
2𝜋)

𝑛
𝑒−‖x‖2/(2𝜎2)𝑑x.
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Figure 3.5: Likelihood Plot
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(see Equation 3.3). What should we use as the parameter 𝜎? We can ask which choice of 𝜎 makes
our data most likely. To calculate this, we think of the probability of a function of 𝜎 and use
Calculus to find the maximum. It’s easier to do this with the logarithm.

log𝑃(x) = −‖x‖2

2𝜎2 − 𝑛 log𝜎 + 𝐶

where 𝐶 is a constant that we’ll ignore. Taking the derivative and setting it to zero, we obtain

−‖x‖2𝜎−3 − 𝑛𝜎−1 = 0

which gives the formula

𝜎2 = ‖x‖2

𝑛

This should look familiar! The maximum likelihood estimate of the variance is the mean-squared-
error.

3.6.3 Linear Regression and likelihood

In our earlier lectures we discussed linear regression at length. Our introduction of ideas from
probability give us new insight into this fundamental tool. Consider a statistical model in which
certain measured values 𝑦 depend linearly on 𝑥 up to a normally distributed error:

𝑦 = 𝑚𝑥 + 𝑏 + 𝜖

where 𝜖 is drawn from the normal distribution with variance 𝜎2.

The classic regression setting has us measuring a collection of 𝑁 points (𝑥𝑖, 𝑦𝑖) and then asking
for the “best” 𝑚, 𝑏, and 𝜎2 to explain these measurements. Using the likelihood perspective, each
value 𝑦𝑖 − 𝑚𝑥𝑖 − 𝑏 is an independent draw from the normal distribution with variance 𝜎2, exactly
like our temperature measurements in the one variable case.

The likelihood (density) of those draws is therefore

𝑃 = ( 1
𝜎

√
2𝜋)

𝑁
𝑒− ∑𝑖(𝑦𝑖−𝑚𝑥𝑖−𝑏)2/(2𝜎2).

What is the maximum likelihood estimate of the parameters 𝑚, 𝑏, and 𝜎2?

To find this we look at the logarithm of 𝑃 and take derivatives.

log(𝑃 ) = −𝑁 log(𝜎) − 1
2𝜎2 ∑

𝑖
(𝑦𝑖 − 𝑚𝑥𝑖 − 𝑏)2.

As far as 𝑚 and 𝑏 are concerned, the minimum comes from the derivatives with respect to 𝑚 and
𝑏 of

∑
𝑖

(𝑦𝑖 − 𝑚𝑥𝑖 − 𝑏)2.
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3 Probability and Bayes Theorem

In other words, the maximum likelihood estimate 𝑚∗ and 𝑏∗ for 𝑚 and 𝑏 are exactly the ordinary
least squares estimates.

As far as 𝜎2 is concerned, we find just as above that the maximum likelihood estimate 𝜎2
∗ is the

mean squared error
𝜎2

∗ = 1
𝑁 ∑

𝑖
(𝑦𝑖 − 𝑚∗𝑥𝑖 − 𝑏∗)2.

The multivariate case of regression proposes a model of the form

𝑌 = 𝑋𝛽 + 𝜖

and a similar calculation again shows that the least squares estimates for 𝛽 are the maximum
likelihood values for this model.

3.7 Bayesian Inference

We conclude our review of ideas from probability by examining the Bayesian perspective on data.

Suppose that we wish to conduct an experiment to determine the temperature outside our house.
We begin our experiment with a statistical model that is supposed to explain the variability in
the results. The model depends on some parameters that we wish to estimate. For example, the
parameters of our experiment might be the ‘true’ temperature 𝑡∗ and the variance 𝜎2 of the error.

From the Bayesian point of view, at the beginning of this experiment we have an initial sense of
what the temperature is likely to be, expressed in the form of a probability distribution. This
initial information is called the prior distribution.

For example, if we know that it’s December in Connecticut, our prior distribution might say that
the temperature is more likely to be between 20 and 40 degrees Fahrenheit and is quite unlikely to
be higher than 60 or lower than 0. So our prior distribution might look like Figure 3.6.

If we really have no opinion about the temperature other than its between say, −20 and 100 degrees,
our prior distribution might be uniform over that range, as in Figure 3.7.

The choice of a prior will guide the interpretation of our experiments in ways that we will see
shortly.

The next step in our experiment is the collection of data. Suppose we let t = (𝑡1, 𝑡2, … , 𝑡𝑛) be a
random variable representing 𝑛 independent measurements of the temperature. We consider the
joint distribution of the parameters 𝑡∗ and 𝜎2 and the possible measurements t:

𝑃(t, 𝑡∗, 𝜎2) = ( 1
𝜎

√
2𝜋)

𝑛
𝑒−‖t−𝑡∗e‖2/(2𝜎2)

where e = (1, 1, … , 1).
The conditional probability 𝑃(𝑡∗, 𝜎2|t) is the distribution of the values of 𝑡∗ and 𝜎2givena value
of the t. This is what we hope to learn by our experiment – namely, if we make a particular
measurement, what does it tell us about 𝑡∗ and 𝜎2?
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Figure 3.6: Prior Distribution on Temperature
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3 Probability and Bayes Theorem

Figure 3.7: Uniform Prior
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Now suppose that we actually make some measurements, and so we obtain a specific set of values
t0 for t.

By Bayes Theorem,

𝑃(𝑡∗, 𝜎2|t = t0) = 𝑃(t = t0|𝑡∗, 𝜎2)𝑃 (𝑡∗, 𝜎2)
𝑃 (t = t0)

We interpret this as follows:

• the left hand side 𝑃(𝑡∗, 𝜎2|t = t0) is called the posterior distribution and is the distribution
of 𝑡∗ and 𝜎2 obtained by updating our prior knowledge with the results of our experiment.

• The probability 𝑃(t = t0|𝑡∗, 𝜎2) is the probability of obtaining the measurements we found
for a particular value of the parameters 𝑡∗ and 𝜎2.

• The probability 𝑃 (𝑡∗, 𝜎2) is the prior distribution on the parameters that reflects our initial
impression of the distribution of these parameters.

• The denominator 𝑃(t = t0) is the total probability of the results that we obtained, and is
the integral over the distribution of the parameters weighted by their prior probability:

𝑃(t = t0) = ∫
𝑡∗,𝜎2

𝑃(t = t0|𝑡∗, 𝜎2)𝑃 (𝑡∗, 𝜎2)

3.7.1 Bayesian experiments with the normal distribution

To illustrate these Bayesian ideas, we’ll consider the problem of measuring the temperature, but
for simplicity let’s assume that we fix the variance in our error measurements at 1 degree. Let’s
use the prior distribution on the true temperature that I proposed in Figure 3.6, which is a normal
distribution with variance 15 “shifted” to be centered at 30:

𝑃(𝑡∗) = ( 1√
2𝜋) 𝑒−(𝑡∗−30)2/30.

The expected value 𝐸[𝑡] – the mean of the this distribution – is 30.

Since the error in our measurements is normally distributed with variance 1, we have

𝑃(𝑡 − 𝑡∗) = ( 1√
2𝜋) 𝑒−(𝑡−𝑡∗)2/2

or as a function of the absolute temperature, we have

𝑃(𝑡, 𝑡∗) = ( 1√
2𝜋) 𝑒−(𝑡−𝑡∗)2/2.

Now we make a bunch of measurements to obtain t0 = (𝑡1, … , 𝑡𝑛). We have

𝑃(t = t0|𝑡∗) = ( 1√
2𝜋)

𝑛
𝑒−‖t−𝑡∗e‖2/2.
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3 Probability and Bayes Theorem

The total probability 𝑇 = 𝑃(t = t0) is hard to calculate, so let’s table that for a while. The
posterior probability is

𝑃 (𝑡∗|t = t0) = 1
𝑇 ( 1√

2𝜋)
𝑛

𝑒−‖t−𝑡∗e‖2/2 ( 1√
2𝜋) 𝑒−(𝑡∗−30)2/30.

Leaving aside the multiplicative constants for the moment, consider the exponential

𝑒−(‖t−𝑡∗e‖2/2+(𝑡∗−30)2)/30.

Since t is a vector of constants – it is a vector of our particular measurements – the exponent

‖t − 𝑡∗e‖2/2 + (𝑡∗ − 30)2/30 = (𝑡∗ − 30)2/30 + ∑
𝑖

(𝑡𝑖 − 𝑡∗)2/2

is a quadratic polynomial in 𝑡∗ that simplifies:

(𝑡∗ − 30)2/30 + ∑
𝑖

(𝑡𝑖 − 𝑡∗)2/2 = 𝐴𝑡2
∗ + 𝐵𝑡∗ + 𝐶.

Here
𝐴 = ( 1

30 + 𝑛
2 ),

𝐵 = −2 − ∑
𝑖

𝑡𝑖

𝐶 = 30 + 1
2 ∑

𝑖
𝑡2
𝑖 .

We can complete the square to write

𝐴𝑡2
∗ + 𝐵𝑡∗ + 𝐶 = (𝑡∗ − 𝑈)2/2𝑉 + 𝐾

where
𝑈 = 2 + ∑𝑖 𝑡𝑖

1
15 + 𝑛

and
𝑉 = 1

1
15 + 𝑛.

So up to constants that don’t involve 𝑡∗, the posterior density is of the form

𝑒(𝑡∗−𝑈)2/2𝑉

and since it is a probability density, the constants must work out to give total integral of 1. There-
fore the posterior density is a normal distribution centered at 𝑈 and with variance 𝑉 . Here 𝑈 is
called theposterior meanand 𝑉 theposterior variance.

To make this explicit, suppose 𝑛 = 5 and we measured the following temperatures:

40, 41, 39, 37, 44
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The mean of these observations is 40.2 and the variance is 5.4.
A calculation shows that the posterior mean is 40.1 and the posterior variance is 0.2. Comparing
the prior with the posterior, we obtain the plot in Figure 3.8. The posterior has a sharp peak at
40.1 degrees. This value is just a bit smaller than the mean of the observed temperatures which is
40.2 degrees. This difference is caused by the prior – our prior distribution said the temperature
was likely to be around 30 degrees, and so the prior pulls the observed mean a bit towards the
prior mean taking into account past experience. Because the variance of the prior is large, it has
a relatively small influence on the posterior.

The general version of the calculation above is summarized in this proposition.

Proposition: Suppose that our statistical model for an experiment proposes that the measure-
ments are normally distributed around an (unknown) mean value of 𝜇 with a (fixed) variance 𝜎2.
Suppose further that our prior distribution on the unknown mean 𝜇 is normal with mean 𝜇0 and
variance 𝜏2. Suppose we make measurements

𝑦1, … , 𝑦𝑛

with mean 𝑦. Then the posterior distribution of 𝜇 is again normal, with posterior variance

𝜏 ′2 = 1
1

𝜏2 + 𝑛
𝜎2

and posterior mean

𝜇′ =
𝜇0
𝜏2 + 𝑛

𝜎2 𝑦
1

1
𝜏2 + 𝑛

𝜎2

So the posterior mean is a sort of weighted average of the sample mean and the prior mean; and as
𝑛 → ∞, the posterior mean approaches the sample mean – in other words, as you get more data,
the prior has less and less influence on the results of the experiment.

3.7.2 Bayesian coin flipping

For our final example in this fast overview of ideas from probability, we consider the problem
of deciding whether a coin is fair. Our experiment consists of 𝑁 flips of a coin with unknown
probability 𝑝 of heads, so the data consists of the number ℎ of heads out of the 𝑁 flips. To apply
Bayesian reasoning, we need a prior distribution on 𝑝. Let’s first assume that we have no reason
to prefer one value of 𝑝 over another, and so we choose for our prior the uniform distribution on 𝑝
between 0 and 1.
We wish to analyze 𝑃(𝑝|ℎ), the probability distribution of 𝑝 given ℎ heads out of 𝑁 flips. Bayes
Theorem gives us:

𝑃(𝑝|ℎ) = 𝑃(ℎ|𝑝)𝑃 (𝑝)
𝑃(ℎ)

where
𝑃(ℎ|𝑝) = (𝑁

ℎ )𝑝ℎ(1 − 𝑝)𝑁−ℎ
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Figure 3.8: Prior and Posterior
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and
𝑃(ℎ) = ∫

1

𝑝=0
𝑃(ℎ|𝑝)𝑃 (𝑝)𝑑𝑝 = (𝑁

ℎ ) ∫
1

𝑝=0
𝑝ℎ(1 − 𝑝)𝑁−ℎ𝑑𝑝

is a constant which insures that
∫

𝑝
𝑃(𝑝|ℎ)𝑑𝑝 = 1.

We see that the posterior distribution 𝑃(𝑝|ℎ) is proportional to the polynomial function

𝑃(𝑝|ℎ) ∝ 𝑝ℎ(1 − 𝑝)𝑁−ℎ.

As in Section 3.6.1, we see that this function peaks at ℎ/𝑁 . This is called the maximum a posteriori
estimate for 𝑝.
Another way to summarize the posterior distribution 𝑃(𝑝|ℎ) is to look at the expected value of 𝑝.
This is called the posterior mean of 𝑝. To compute it, we need to know the normalization constant
in the expression for 𝑃 (𝑝|ℎ), and for that we can take advantage of the properties of a special
function 𝐵(𝑎, 𝑏) called the Beta-function:

𝐵(𝑎, 𝑏) = ∫
1

𝑝=0
𝑝𝑎−1(1 − 𝑝)𝑏−1𝑑𝑝.

Proposition: If 𝑎 and 𝑏 are integers, then 𝐵(𝑎, 𝑏) = 𝑎+𝑏
𝑎𝑏

1
(𝑎+𝑏

𝑎 ) .

Proof: Using integration by parts, one can show that

𝐵(𝑎, 𝑏) = 𝑎 − 1
𝑏 𝐵(𝑎 − 1, 𝑏 + 1)

and a simple calculation shows that
𝐵(1, 𝑏) = 1

𝑏 .
Let

𝐻(𝑎, 𝑏) = 𝑎 + 𝑏
𝑎𝑏

1
(𝑎+𝑏

𝑎 ) = (𝑎 − 1)!(𝑏 − 1)!
(𝑎 + 𝑏 − 1)!

Then it’s easy to check that 𝐻 satsifies the same recurrences as 𝐵(𝑎, 𝑏), and that 𝐻(1, 𝑏) = 1/𝑏.
So the two functions agree by induction.

Using this Proposition, we see that

𝑃(𝑝|ℎ) = 𝑝ℎ(1 − 𝑝)𝑁−ℎ

𝐵(ℎ + 1, 𝑁 − ℎ + 1)
and

𝐸[𝑝] =
∫1
𝑝=0 𝑝ℎ+1(1 − 𝑝)𝑁−ℎ𝑑𝑝
𝐵(ℎ + 1, 𝑁 − ℎ + 1) = 𝐵(ℎ + 2, 𝑁 − ℎ + 1)

𝐵(ℎ + 1, 𝑁 − ℎ + 1).

Sorting through this using the formula for 𝐵(𝑎, 𝑏) we obtain

𝐸[𝑝] = ℎ + 1
𝑁 + 2.
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3 Probability and Bayes Theorem

So if we obtained 55 heads out of 100 flips, the maximum a posteriori estimate for 𝑝 is .55, while
the posterior mean is 56/102 = .549 – just a bit less.

Now suppose that we had some reason to believe that our coin was fair. Then we can choose a
prior probability distribution that expresses this. For example, we can choose

𝑃(𝑝) = 1
𝐵(5, 5)𝑝4(1 − 𝑝)4.

Here we use the Beta function to guarantee that ∫1
0 𝑃(𝑝)𝑑𝑝 = 1. We show this prior distribution

in Figure 3.9.

If we redo our Bayes theorem calculation, we find that our posterior distribution is

𝑃(𝑝|ℎ) ∝ 𝑝ℎ+4(1 − 𝑝)𝑁−ℎ+4

and relying again on the Beta function for normalization we have

𝑃(𝑝|ℎ) = 1
𝐵(ℎ + 5, 𝑁 − ℎ + 5)𝑝ℎ+4(1 − 𝑝)𝑁−ℎ+4

Here the maximum a posterior estimate for 𝑝 is ℎ + 4/𝑁 + 8 while our posterior mean is

𝐵(ℎ + 6, 𝑁 − ℎ + 5)
𝐵(ℎ + 5, 𝑁 − ℎ + 5) = ℎ + 5

𝑁 + 10.

In the situation of 55 heads out of 100, the maximum a posteriori estimate is .546 and the posterior
mean is .545. These numbers have been pulled just a bit towards .5 because our prior knowledge
makes us a little bit biased towards 𝑝 = .5.

3.7.3 Bayesian Regression (or Ridge Regression)

In this chapter we return to our discussion of linear regression and introduce some Bayesian ideas.
The combination will lead us to the notion of “ridge” regression, which is a type of linear regression
that includes a prior distribution on the coefficients that indicates our preference for smaller rather
than larger coefficients. Introduction of this prior leads to a form of linear regression that is more
resilient in situations where the independent variables are less independent than we would hope.

Before introducing these Bayesian ideas, let us recall from Section 3.6.3 that ordinary least squares
yields the parameters that give the “most likely” set of parameters for a model of the form

𝑌 = 𝑋𝑀 + 𝜖

where the error 𝜖 is normally distributed with mean 0 and variance 𝜎2, and the mean squared error
becomes the maximum likelihood estimate of the variance 𝜎2.

To put this into a Bayesian perspective, we notice that the linear regression model views 𝑌 − 𝑋𝑀
as normally distributed given 𝑀 . That is, we see the probability 𝑃(𝑌 − 𝑋𝑀|𝑀) as normal with
variance 𝜎2.
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Figure 3.9: Beta(5,5) Prior
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Then we introduce a prior distribution on the coefficients 𝑀 , assuming that they, too, are normally
distributed around zero with variance 𝜏2. This means that ab initio we think that the coefficients
are likely to be small.

From Bayes Theorem, we then have

𝑃(𝑀|𝑌 , 𝑋) = 𝑃(𝑌 , 𝑋|𝑀)𝑃(𝑀)
𝑃(𝑌 , 𝑋)

and in distribution terms we have

𝑃(𝑀|𝑌 , 𝑋) = 𝐴𝑒‖𝑌 −𝑋𝑀‖2/𝜎2𝑒−‖𝑀‖2/𝜏2

where 𝐴 is a normalizing constant.

The first thing to note from this expression is that the posterior distribution for the 𝑀 parameters
for regression are themselves normally distributed.

The maximum likelihood estimate 𝑀𝑟 for the parameters 𝑀 occurs when 𝑃(𝑀|𝑌 , 𝑋) is maximum,
which we find by taking the derivatives. Using the matrix algebra developed in our linear regression
chapter, we obtain the equation

(𝑋⊺𝑌 − (𝑋⊺𝑋)𝑀𝑟)/𝜎2 − 𝑀𝑟/𝜏2 = 0

or
(𝑋⊺𝑋 + 𝑠)𝑀𝑟 = 𝑋⊺𝑌 (3.4)

where 𝑠 = 𝜎2/𝜏2.

Therefore the ridge coefficients are given by the equation

𝑀𝑟 = (𝑋⊺𝑋 + 𝑠)−1𝑋⊺𝑌 (3.5)

3.7.3.1 Practical aspects of ridge regression

Using ridge regression leads to a solution to the least squares problem in which the regression
coefficients are biased towards being smaller. Beyond this, there are a number of implications of
the technique which affect its use in practice.

First, we can put the Bayesian derivation of the ridge regression formulae in the background and
focus our attention on Equation 3.5. We can treat the parameter 𝑠 (which must be non-negative)
as “adjustable”.

One important consideration when using ridge regression is that Equation 3.5 is not invariant if
we scale 𝑋 and 𝑌 by a constant. This is different from “plain” regression where we consider the
equation 𝑌 = 𝑋𝑀 . In that case, rescaling 𝑋 and 𝑌 by the same factor leaves the coefficients
𝑀 alone. For this reason, ridge regression is typically used on centered, standardized coordinates.
In other words, we replace each feature 𝑥𝑖 by (𝑥𝑖 − 𝜇𝑖)/𝜎𝑖 where 𝜇𝑖 and 𝜎𝑖 are the sample mean
and standard deviation of the 𝑖𝑡ℎ feature, and we replace our response variables 𝑦𝑖 similarly by
(𝑦 − 𝜇)/𝜎 where 𝜇 and 𝜎 are the mean and standard deviation of the 𝑦-values. Then we find

74



3.7 Bayesian Inference

𝑀 using Equation 3.5, perhaps experimenting with different values of 𝑠, using our centered and
standardized variables.

To emphasize that we are using centered coordinates, we write 𝑋0 for our data matrix instead of
𝑋. Recall that the matrix 𝑋⊺

0 𝑋0 that enters into Equation 3.4 is 𝑁𝐷0 where 𝐷0 is the covariance
matrix. Therefore in ridge regression we have replaced 𝑁𝐷0 by 𝑁𝐷0 + 𝑠. Since 𝐷0 is a real
symmetric matrix, as we’ve seen in Chapter 2 it is diagonalizable so that 𝐴𝐷0𝐴−1 is diagonal for
an orthogonal matrix 𝐴 and has eigenvalues 𝜆1 ≥ … ≥ 𝜆𝑘 which are the variances of the data along
the principal directions.

One effect of using ridge regression is that the eigenvalues of 𝑁𝐷0 + 𝑠 are always at least 𝑠 > 0,
so the use of ridge regression avoids the possibility that 𝐷0 might not be invertible. In fact, a
bit more is true. Numerical analysis tells us that when considering the problem of computing the
inverse of a matrix, we should look at its condition number, which is the ratio 𝜆1/𝜆𝑘 of the largest
to the smallest eigenvalue.

If the condition number of a matrix is large, then results from numerical analysis show that it
is almost singular and its inverse becomes very sensitive to small changes in the entries of the
matrix. However, the eigenvalues of 𝑁𝐷0 + 𝑠 are 𝑁𝜆𝑖 + 𝑠 and so the condition number becomes
(𝑁𝜆1 + 𝑠)/(𝑁𝜆𝑘 + 𝑠). For larger values of 𝜆, this condition number shrinks, and so the inverse
of the matrix 𝑁𝐷0 + 𝑠 becomes better behaved than 𝑁𝐷0. In this way, ridge regression helps to
improve the numerical stability of the linear regression algorithm.

A second way to look at Ridge regression is to go back to the discussion of the singular value
decomposition of the matrix 𝑋0 in section Section 2.4.2. There we showed that the SVD of 𝑋0
yields an expression

𝑋0 = 𝑈Λ̃𝑃 ⊺

where 𝑈 and 𝑃 are orthogonal matrices and Λ is an 𝑁 × 𝑘 matrix whose upper block is diagonal
with eigenvalues √𝑁𝜆𝑖. The rows of 𝑈 gave us an orthonormal basis that allowed us to write the
predicted vector ̂𝑌 as a projection:

̂𝑌 =
𝑘

∑
𝑖=1

(𝑢𝑗 ⋅ 𝑌 )𝑢⊺
𝑗 .

If we repeat this calculation, but using the ridge regression formula, we obtain

̂𝑌𝑟 = 𝑋0𝑀𝑟 = 𝑈Λ̃𝑃 ⊺(𝑃 Λ̃⊺𝑈⊺𝑈Λ̃𝑃 ⊺ + 𝑠)−1𝑃 Λ̃⊺𝑈⊺𝑌 .

Since 𝑃 is orthogonal, 𝑃 ⊺ = 𝑃 −1, so

𝑃 ⊺(𝑃 Λ̃2𝑃 ⊺ + 𝑠)−1𝑃 = 𝑃 −1(𝑃 (Λ + 𝑠)𝑃 −1)𝑃 = (Λ + 𝑠)−1

and Λ + 𝑠 is a 𝑘 × 𝑘 diagonal matrix with entries 𝑁𝜆𝑖 + 𝑠.

Putting the pieces together we see that

̂𝑌𝑟 = 𝑈Λ̃(Λ + 𝑠)−1Λ̃𝑈⊺𝑌 .

75



3 Probability and Bayes Theorem

In the language of orthogonal projection, this means that

̂𝑌𝑟 =
𝑘

∑
𝑖=1

𝑁𝜆𝑖
𝑁𝜆𝑖 + 𝑠(𝑢𝑗 ⋅ 𝑌 )𝑢⊺

𝑗 .

In other words, the predicted value computed by ridge regression is obtained by projecting 𝑌
into the space spanned by the feature vectors, but weighting the different principal components
by 𝑁𝜆𝑖/(𝑁𝜆𝑖 + 𝑠). With this weighting, the principal components with smaller variances are
weighted less than those with larger variances. For this reason, ridge regression is sometimes called
a shrinkage method.
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4 The Naive Bayes classification method

4.1 Introduction

In our discussion of Bayes Theorem, we looked at a situation in which we had a population consist-
ing of people infected with COVID-19 and people not infected, and we had a test that we could
apply to determine which class an individual belonged to. Because our test was not 100 percent
reliable, a positive test result didn’t guarantee that a person was infected, and we used Bayes The-
orem to evaluate how to interpret the positive test result. More specifically, our information about
the test performance gave us the the conditional probabilities of positive and negative test results
given infection status – so for example we were given 𝑃(+|infected), the chance of getting a positive
test assuming the person is infected – and we used Bayes Theorem to determine 𝑃(infected|+), the
chance that a person was infected given a positive test result.

The Naive Bayes classification method is a generalization of this idea. We have data that belongs
to one of two classes, and based on the results of a series of tests, we wish to decide which class
a particular data point belongs to. For one example, we are given a collection of product reviews
from a website and we wish to classify those reviews as either “positive” or “negative.” This type
of problem is called “sentiment analysis.” For another, related example, we have a collection of
emails or text messages and we wish to label those that are likely “spam” emails. In both of these
examples, the “test” that we will apply is to look for the appearance or absence of certain key
words that make the text more or less likely to belong to a certain class. For example, we might
find that a movie review that contains the word “great” is more likely to be positive than negative,
while a review that contains the word “boring” is more likely to be negative.

The reason for the word “naive” in the name of this method is that we will derive our probabilities
from empirical data, rather than from any deeper theory. For example, to find the probability that
a negative movie review contains the word “boring”, we will look at a bunch of reviews that our
experts have said are negative, and compute the proportion of those that contain the word boring.
Indeed, to develop our family of tests, we will rely on a training set of already classified data from
which we can determine estimates of probabilities that we need.

4.2 An example dataset

To illustrate the Naive Bayes algorithm, we will work with the “Sentiment Labelled Sentences
Data Set” ([3]). This dataset contains 3 files, each containing 1000 documents labelled 0 or 1
for “negative” or “positive” sentiment. There are 500 of each type of document in each file. One
file contains reviews of products from amazon.com; one contains yelp restaurant reviews, and one
contains movie reviews from imdb.com.
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4 The Naive Bayes classification method

Let’s focus on the amazon reviews data. Here are some samples:

So there is no way for me to plug it in here
in the US unless I go by a converter. 0

Good case, Excellent value. 1
Great for the jawbone. 1
Tied to charger for conversations lasting more than

45 minutes.MAJOR PROBLEMS!! 0
The mic is great. 1
I have to jiggle the plug to get it to line up right to

get decent volume. 0
If you have several dozen or several hundred contacts, then

imagine the fun of sending each of them one by one. 0
If you are Razr owner...you must have this! 1
Needless to say, I wasted my money. 0
What a waste of money and time!. 0

As you can see, each line consists of a product review followed by a 0 or 1; in this file the review
is separated from the text by a tab character.

4.3 Bernoulli tests

We will describe the “Bernoulli” version of a Naive Bayes classifier for this data. The building
block of this method is a test based on a single word. For example, let’s consider the word great
among all of our amazon reviews. It turns out that great occurs 5 times in negative reviews and
92 times in positive reviews among our 1000 examples. So it seems that seeing the word great in a
review makes it more likely to be positive. The appearances of great are summarized in Table 4.1
. We write ~great for the case where great does not appear.

Table 4.1: Ocurrences of great by type of review
+ - total

great 92 5 97
~great 408 495 903
total 500 500 1000

In this data, positive and negative reviews are equally likely so 𝑃(+) = 𝑃(−) = .5 From this table,
and Bayes Theorem, we obtain the empirical probabilities (or “naive” probabilities).

𝑃(great|+) = 92
500 = .184

and
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4.3 Bernoulli tests

𝑃(great) = 97
1000 = .097

Therefore

𝑃(+|great) = .184
.097(.5) = 0.948.

In other words, if you see the word great in a review, there’s a 95% chance that the review is
positive.

What if you do not see the word great? A similar calculation from the table yields

𝑃(+| ∼ great) = 408
903 = .452

In other words, not seeing the word great gives a little evidence that the review is negative (there’s
a 55% chance it’s negative) but it’s not that conclusive.

The word waste is associated with negative reviews. It’s statistics are summarized in Table 4.2
.

Table 4.2: Ocurrences of waste by type of review
+ - total

waste 0 14 14
~waste 500 486 986
total 500 500 1000

Based on this data, the “naive” probabilities we are interested in are:

𝑃(+|waste) = 0
𝑃(+| ∼ waste) = .51

In other words, if you see waste you definitely have a negative review, but if you don’t, you’re
only slightly more likely to have a positive one.

What about combining these two tests? Or using even more words? We could analyze our data
to count cases in which both great and waste occur, in which only one occurs, or in which
neither occurs, within the two different categories of reviews, and then use those counts to estimate
empirical probabilities of the joint events. But while this might be feasible with two words, if we
want to use many words, the number of combinations quickly becomes huge. So instead, we make
a basic, and probably false, assumption, but one that makes a simple analysis possible.

79



4 The Naive Bayes classification method

Assumption: We assume that the presence or absence of the words great and waste in a
particular review (positive or negative) are independent events. More generally, given a collection
of words 𝑤1, … , 𝑤𝑘, we assume that their occurences in a given review are independent events.

Independence means that we have

𝑃(great, waste|±) = 𝑃(great|±)𝑃(waste|±)
𝑃(great, ∼ waste|±) = 𝑃(great|±)𝑃(∼ waste|±)

⋮

So for example, if a document contains the word great and does not contain the word waste, then
the probability of it being a positive review is:

𝑃(+|great, ∼ waste) = 𝑃(great|+)𝑃(∼ waste|+)𝑃(+)
𝑃(great, ∼ waste)

while the probability of it being a negative review is

𝑃(−|great, ∼ waste) = 𝑃(great|−)𝑃(∼ waste|−)𝑃(−)
𝑃(great, ∼ waste)

Rather than compute these probabilities (which involves working out the denominators), let’s just
compare them. Since they have the same denominators, we just need to compare numerators,
which we call 𝐿 for likelihood: Using the data from Table 4.1 and Table 4.2 , we obtain:

𝐿(+|great, ∼ waste) = (.184)(1)(.5) = .092

and
𝐿(−|great, ∼ waste) = (.01)(.028)(.5) = .00014

so our data suggests strongly that this is a positive review.

4.4 Feature vectors

To generalize this, suppose that we have extracted keywords 𝑤1, … , 𝑤𝑘 from our data and we
have computed the empirical values 𝑃(𝑤𝑖|+) and 𝑃(𝑤𝑖|−) by counting the fraction of positive and
negative reviews that contain the word 𝑤𝑖:

𝑃 (𝑤𝑖|±) = number of ± reviews that mention 𝑤𝑖
number of ± reviews total

Notice that we only count reviews, not ocurrences, so that if a word occurs multiple times in a
review it only contributes 1 to the count. That’s why this is called the Bernoulli Naive Bayes – we
are thinking of each keyword as yielding a yes/no test on each review.
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4.5 Likelihood

Given a review, we look to see whether each of our 𝑘 keywords appears or does not. We encode
this information as a vector of length 𝑘 containing 0’s and 1’s indicating the absence or presence
of the 𝑘th keyword. Let’s call this vector the feature vector for the review.

For example, if our keywords are 𝑤1 = waste, 𝑤2 = great, and 𝑤3 = useless, and our review
says

This phone is useless, useless, useless! What a waste!

then the associated feature vector is 𝑓 = (1, 0, 1).
For the purposes of classification of our reviews, we are going to forget entirely about the text
of our reviews and work only with the feature vectors. From an abstract perspective, then, by
choosing our 𝑘 keywords, our “training set” of 𝑁 labelled reviews can be replaced by an 𝑁 × 𝑘
matrix 𝑋 = (𝑥𝑖𝑗) with entries 0 or 1, where 𝑥𝑖𝑗 = 1 if and only if the 𝑗𝑡ℎ keyword appears in the
𝑖𝑡ℎ review.

The labels of 0 or 1 for unfavorable or favorable reviews can also be packaged up into a 𝑁 × 1
vector 𝑌 that serves as our “target” variable.

Setting things up this way lets us express the computations of our probabilities 𝑃(𝑤𝑖|±) in vector
form. In fact, 𝑌 ⊺𝑋 is the sum of the rows of 𝑋 corresponding to positive reviews, and therefore,
letting 𝑁± denote the number of ± reviews,

𝑃+ = 1
𝑁+

𝑌 ⊺𝑋 = [ 𝑃(𝑤1|+) 𝑃(𝑤2|+) ⋯ 𝑃(𝑤𝑘|+) ] .

Similarly, since 𝑌 and 𝑋 have zero and one entries only, if we write 1−𝑌 and 1−𝑋 for the matrices
obtained by replacing every entry 𝑧 by 1 − 𝑧 in each matrix, we have:

𝑃− = 1
𝑁−

(1 − 𝑌 )⊺𝑋 = [ 𝑃(𝑤1|−) 𝑃(𝑤2|−) ⋯ 𝑃(𝑤𝑘|−) ] .

Note that the number of positive reviews is 𝑁+ = 𝑌 ⊺𝑌 and the number of negative ones is
𝑁− = 𝑁 − 𝑁+. Since 𝑃 (+) is the fraction of positive reviews among all reviews, we can compute
it as 𝑃(+) = 1

𝑁 𝑌 ⊺𝑌 , and 𝑃(−) = 1 − 𝑃(+).

4.5 Likelihood

If a review has an associated feature vector 𝑓 = (𝑓1, … , 𝑓𝑘), then by independence the probability
of that feature vector ocurring within one of the ± classes is

𝑃(𝑓|±) = ∏
𝑖∶𝑓𝑖=1

𝑃(𝑤𝑖|±) ∏
𝑖∶𝑓𝑖=0

(1 − 𝑃(𝑤𝑖|±))

which we can also write

𝑃(𝑓|±) =
𝑘

∏
𝑖=1

𝑃(𝑤𝑖|±)𝑓𝑖(1 − 𝑃(𝑤𝑖|±))(1−𝑓𝑖). (4.1)
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These products aren’t practical to work with – they are often the product of many, many small
numbers and are therefore really tiny. Therefore it’s much more practical to work with their
logarithms.

log𝑃(𝑓|±) =
𝑘

∑
𝑖=1

𝑓𝑖 log𝑃(𝑤𝑖|±) + (1 − 𝑓𝑖) log(1 − 𝑃(𝑤𝑖|±)) (4.2)

If we have a group of reviews 𝑁 organized in a matrix 𝑋, where each row is the feature vector
associated to the corresponding review, then we can compute all of this at once. We’ll write
log𝑃± = log𝑃(𝑋|±) as the row vector whose 𝑖𝑡ℎ entry is log𝑃(𝑓𝑖|±):

log𝑃(𝑋|±) = 𝑋(log𝑃±)⊺ + (1 − 𝑋)(log(1 − 𝑃±))⊺. (4.3)

By Bayes Theorem, we can express the chance that our review with feature vector 𝑓 is positive or
negative by the formula:

log𝑃(±|𝑓) = log𝑃(𝑓|±) + log𝑃(±) − log𝑃(𝑓)

where
𝑃(±) = the number of ± reviews

total number of reviews
and 𝑃(𝑓) is the fraction of reviews with the given feature vector. (Note: in practice, some of these
probabilities will be zero, and so the log will not be defined. A common practical approach to
dealing with this is to introduce a “fake document” into both classes in which every vocabulary
word appears – this guarantees that the frequency matrix will have no zeros in it).

A natural classification rule would be to say that a review is positive if log𝑃(+|𝑓) > log𝑃(−|𝑓), and
negative otherwise. In applying this, we can avoid computing 𝑃(𝑓) by just comparing log𝑃(𝑓|+)+
log𝑃(+) and log𝑃 (𝑓|−) + log𝑃(−) computed using Equation 4.2. Then we say:

• a review is positive if log𝑃(𝑓|+) + log𝑃(+) > log𝑃(𝑓|−) + log𝑃(−) and negative otherwise.

Again we can exploit the matrix structure to do this for a bunch of reviews at once. Using
Equation 4.3 and the vectors 𝑃± we can compute column vectors corresponding to both sides of
our decision inequality and subtract them. The positive entries indicate positive reviews, and the
negative ones, negative reviews.

4.6 The Bag of Words

In our analysis above, we thought of the presence or absence of certain key words as a set of
independent tests that provided evidence of whether our review was positive or negative. This
approach is suited to short pieces of text, but what about longer documents? In that case, we
might want to consider not just the presence or absence of words, but the frequency with which
they appear. Multinomial Naive Bayes, based on the “bag of words” model, is a classification
method similar to Bernoulli Naive Bayes but which takes term frequency into account.
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Let’s consider, as above, the problem of classifying documents into one of two classes. We assume
that we have a set of keywords 𝑤1, … , 𝑤𝑘. For each class ±, we have a set of probabilities 𝑃(𝑤𝑖|±)
with the property that

𝑘
∑
𝑖=1

𝑃(𝑤𝑖|±) = 1.

The “bag of words” model says that we construct a document of length 𝑁 in, say, the + class by
independently drawing a word 𝑁 times from the set 𝑤1, … , 𝑤𝑘 with probabilities 𝑃(𝑤𝑖|+). The
name “bag of words” comes from thinking of each class as having an associated bag containing the
words 𝑤1, … , 𝑤𝑘 with relative frequencies given by the probabilities, and generating a document
by repeatedly drawing a word from the bag.

In the Multinomial Naive Bayes method, we estimate the probabilities 𝑃(𝑤𝑖|±) by counting the
number of times each word occurs in a document of the given class:

𝑃(𝑤𝑖|±) = number of times word 𝑖 occurs in ± documents
total number of words in ± documents

This is the “naive” part of the algorithm. Package up these probabilities in vectors:

𝑃± = [ 𝑃(𝑤1|±) ⋯ 𝑃(𝑤𝑘|±) ] .

As in the Bernoulli case, we often add a fake document to each class where all of the words occur
once, in order to avoid having zero frequencies when we take a logarithm later.

Now, given a document, we associate a feature vector f whose 𝑖𝑡ℎ entry is the frequency with which
word 𝑖 appears in that document. The probability of obtaining a particular document with feature
vector f = (𝑓1, … , 𝑓𝑘) from the bag of words associated with class ± is given by the “multinomial”
distribution:

𝑃(f|±) = 𝑁!
𝑓1!𝑓2! ⋯ 𝑓𝑘!

𝑘
∏
𝑖=1

𝑃(𝑤𝑖|±)𝑓𝑖

which generalizes the binomial distribution to multiple choices. The constant will prove irrelevant,
so let’s call the interesting part 𝐿±:

𝐿(f|±) =
𝑘

∏
𝑖=1

𝑃(𝑤𝑖|±)𝑓𝑖

From Bayes Theorem, we have

𝑃(±|f) = 𝑃(f|±)𝑃(±)
𝑃(f)

where 𝑃(±) is estimated by the fraction of documents (total) in each class.

We classify our document by considering 𝑃(±|f) and concluding:

• a document with feature vector f is in class + if log𝑃(+|f) > log𝑃(−|f).
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In this comparison, both the constant (the multinomial coefficient) and the denominator cancel
out, so we only need to compare log𝐿(f|+) + log𝑃(+) with log𝐿(f|−) + log𝑃(−) We have

log𝐿(f|±) =
𝑘

∑
𝑖=1

𝑓𝑖 log𝑃(𝑤𝑖|±)

or, in vector form,
log𝑃(f|±) = f log𝑃 ⊺

±

Therefore, just as in the Bernoulli case, we can package up our document 𝑖 as an 𝑁 ×𝑘 data matrix
𝑋, where position 𝑖𝑗 gives the number of times word 𝑗 occurs in document 𝑖. Then we can compute
the vector

̂𝑌 = 𝑋 log𝑃 ⊺
+ + log𝑃(+) − 𝑋 log𝑃 ⊺

− − log𝑃(−)
and assign those documents where ̂𝑌 > 0 to the + class and the rest to the − class.

4.7 Other applications

We developed the Naive Bayes method for sentiment analysis, but once we chose a set of keywords
our training data was reduced to an 𝑁 × 𝑘 matrix 𝑋 of 0/1 entries, together with an 𝑁 × 1 target
column vector 𝑌 . Then our classification problem is to decide whether a given vector of 𝑘 entries,
all 0 or 1, is more likely to carry a 0 or 1 label. All of the parameters we needed for Naive Bayes –
the various probabilities – can be extracted from the matrix 𝑋.

For example, suppose we have a collection of images represented as black/white pixels in a grid
that belong to one of two classes. For example, we might have 28𝑥28 bitmaps of handwritten zeros
and ones that are labelled, and we wish to construct a classifier that can decide whether a new
28𝑥28 bitmap is a zero or one. An example of such a bitmap is given in Figure 4.1. We can view
each 28𝑥28 bitmap as a vector of length 784 with 0/1 entries and apply the same approach outlined
above. However, there are other methods that are more commonly used for this problem, such as
logistic regression and neural networks.

Figure 4.1: Handwritten 0
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5 Gradient Descent

5.1 Introduction

A common mathematical theme throughout machine learning is the problem of finding the mini-
mum or maximum value of a function. For example, in linear regression, we find the “best-fitting”
linear function by identifying the parameters that minimize the mean squared error. In principal
component analysis, we try to identify the scores which have the greatest variation for the given
set of data, and for this we needed to maximize a function using Lagrange multipliers. In later
lectures, we will see many more examples where we construct the “best” function for a particular
task by minimizing some kind of error between our constructed function and the true observed
values.

In our discussion of PCA and linear regression, we were able to give analytic formulae for the solu-
tion to our problems. These solutions involved (in the case of linear regression) inverting a matrix,
and in the case of PCA, finding eigenvalues and eigenvectors. These are elegant mathematical
results, but at that time we begged the question of how to actually compute these quantities of
interest in an efficient way. In this section, we will discuss the technique known as gradient descent,
which is perhaps the simplest approach to minimizing a function using calculus, and which is at
the foundation of many practical machine learning algorithms.

5.2 The Key Idea

Suppose that we have a function 𝑓(𝑥0, … , 𝑥𝑘−1) and we wish to find its minimum value. In Calculus
classes, we are taught to take the derivates of the function and set them equal to zero, but for
anything other than the simplest functions this problem is not solvable in practice. In real life, we
use iterative methods to find the minimum of the function 𝑓 .
The main tool in this approach is a fact from multivariate calculus.

Proposition: Let 𝑓(𝑥0, … , 𝑥𝑘−1) be a function and let ∇𝑓 be its gradient. Then at each point 𝑥
in R𝑘, the gradient (∇𝑓)(𝑥) is a vector that points in the direction in which 𝑓 is increasing most
rapidly from 𝑥 and (−∇𝑓)(𝑥) points in the direction in which 𝑓 is decreasing most rapidly. If
∇𝑓 = 0 at 𝑥 then 𝑥 is a critical point of 𝑓 .
This fact arises from thinking about the directional derivative of a function.
The directional derivative 𝐷𝑣𝑓 measures the rate of change of 𝑓 as one moves with velocity vector
𝑣 from the point 𝑥 and it is defined as

𝐷𝑣𝑓(𝑥) = 𝑑
𝑑𝑡𝑓(𝑥 + 𝑡𝑣)|𝑡=0
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From the chain rule, we can compute that

𝐷𝑣𝑓(𝑥) =
𝑘−1
∑
𝑖=0

𝜕𝑓
𝜕𝑥𝑖

𝑑𝑥𝑖
𝑑𝑡 = (∇𝑓) ⋅ 𝑣

where

∇𝑓 = [ 𝜕𝑓
𝜕𝑥𝑖

]
𝑘−1

𝑖=0

is the gradient of 𝑓 .

The directional derivative 𝐷𝑣(𝑓) = (∇𝑓) ⋅ 𝑣 measures the rate of change of 𝑓 if we travel with
velocity 𝑣 from a point 𝑥. To remove the dependence on the magnitude of 𝑣 (since obviously 𝑓 will
change more quickly if we travel more quickly in a given direction), we scale 𝑣 to be a unit vector.
Then, since

∇𝑓 ⋅ 𝑣 = ‖∇𝑓‖‖𝑣‖ cos 𝜃 = ‖∇𝑓‖ cos 𝜃
where 𝜃 is the angle between 𝑣 and ∇𝑓 , the dot product giving the rate is maximized when 𝑣 is
parallel to ∇𝑓 . If 𝑣 is opposite to ∇𝑓 , the dot product is minimized.

5.3 The Algorithm

To exploit the fact that the gradient points in the direction of most rapid increase of our function
𝑓 , we adopt the following strategy. Starting from a point 𝑥, compute the gradient ∇𝑓 of 𝑓 . Take a
small step in the direction of the gradient – that should increase the value of 𝑓 . Then do it again,
and again; each time, you move in the direction of increasing 𝑥, but at some point the gradient
becomes very small and you stop moving much. At that moment, you quit. This is called “gradient
ascent.”

If we want to minimize, not maximize, our function, then we want to move opposite to the gradient
in small steps. This is the more common formulation.

Algorithm 5.1 (Gradient Descent Algorithm). Given a function 𝑓 ∶ ℝ𝑘 → ℝ, to find a point where
it is mimized, choose:

• a starting point 𝑐(0),
• a small constant 𝜈 (called the learning rate)
• and a small constant 𝜖 (the tolerance).

Iteratively compute
𝑐(𝑛+1) = 𝑐(𝑛) − 𝜈∇𝑓(𝑐(𝑛))

until |𝑐(𝑛+1) − 𝑐(𝑛)| < 𝜖.

Then 𝑐(𝑛+1) is an (approximate) critical point of 𝑓.
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5.3 The Algorithm

Figure 5.1: Gradient Descent Illustrated
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The behavior of gradient descent, at least when all goes well, is illustrated in Figure 5.1 for the
function

𝑓(𝑥, 𝑦) = 1.3𝑒−2.5((𝑥−1.3)2+(𝑦−0.8)2)) − 1.2𝑒−2((𝑥−1.8)2)+(𝑦−1.3)2).
Figure 5.1 is a contour plot, with the black lines at constant height and the colors indicating the
height of the function. This function has two “pits” or “wells” indicated by the darker, “cooler”
colored regions. The red line shows the path that the gradient descent algorithm takes, from a
higher, “hotter” region to a lower cooler one.

To get a little more perspective on gradient descent, consider the one-dimensional case, with

𝑓(𝑥) = 3𝑥4 + 4𝑥3 − 12𝑥2 + 5.

This is a quartic polynomial whose graph has two local minima and a local maximum, depicted in
Figure 5.2.

Figure 5.2: A quartic polynomial

In this case the gradient is just the derivative

𝑓 ′(𝑥) = 12𝑥3 + 12𝑥2 − 24𝑥

and the iteration is
𝑐(𝑛+1) = 𝑐(𝑛) − 12𝜈((𝑐(𝑛))3 + (𝑐(𝑛))2 − 2𝑐(𝑛)).

From this simple example we can see the power and also the pitfalls of this method. Suppose we
choose 𝑥0 = .5, 𝜈 = .01, and do 30 iterations of the main loop in our algorithm. The result is
shown in Figure 5.3 .

As we hope, the red dots quickly descend to the bottom of the “valley” at the point 𝑥 = 1. However,
this valley is only a local minimum of the function; the true minimum is at 𝑥 = −2. Gradient descent
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5.3 The Algorithm

Figure 5.3: Gradient descent to a local minimum
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can’t see that far away point and so we don’t find the true minimum of the function. One way
to handle this is to run gradient descent multiple times with random starting coordinates and then
look for the minimum value it finds among all of these tries.

Gradient descent can fail more spectacularly if we choose an unfortunate combination of learning
rate and starting point.
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6 Logistic Regression

Suppose that we are trying to convince customers to buy our product by showing them advertising.
Our experience teaches us that there is no deterministic relationship between how often a potential
customer sees one of our ads and whether or not they purchase our product, nevertheless it is the
case that as they see more ads they become more likely to make a purchase. Logistic regression is
a statistical model that captures this idea.

To formulate this situation mathematically, let’s imagine that we are trying to model a random
event that depends on a parameter. The random event might be a user deciding to make a
purchase from a website, which, in our very simple model, depends on how many times the user
saw an advertisement for the product in question. But we could imagine other situations where
the chance of an event happening depends on a parameter. For example, we could imagine that
a student’s score on a certain test depends on how much studying they do, with the likelihood of
passing the test increasing with the amount of studying.

To construct this model, we assume that the probability of a certain event 𝑝 is related to some
parameter 𝑥 by the following relationship:

log 𝑝
1 − 𝑝 = 𝑎𝑥 + 𝑏 (6.1)

where 𝑎 and 𝑏 are constants. The quantity 𝑝
1−𝑝 is the “odds” of the event occurring. We often

use this quantity colloquially; if the chance of our team winning a football game is 1 in 3, then we
would say the odds of a win are 1-to-2, which we can interpret as meaning they are twice as likely
to lose as to win. The quantity log 𝑝

1−𝑝 is, for obvious reasons, called the log-odds of the event.
The logistic model in Equation 6.1 means that an increase by 1 in the parameter 𝑥 increases the
log-odds of the event happening by 𝑎.
The assumption in Equation 6.1 can be written

𝑝
1 − 𝑝 = 𝑒𝑎𝑥+𝑏

and we interpret this as telling us that if the parameter 𝑥 increases by 1, the odds of our event
happening go up by a factor of 𝑒𝑎. So, to be even more concrete, if 𝑎 = log 2, then our logistic
model would say that an increase of 1 in our parameter 𝑥 doubles the odds of our event taking
place.

In terms of the probability 𝑝, Equation 6.1 can be rewritten

𝑝 = 1
1 + 𝑒−𝑎𝑥−𝑏
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6 Logistic Regression

This proposed relationship between the probability 𝑝 and the parameter 𝑥 is called the logistic
model. The function

𝜎(𝑥) = 1
1 + 𝑒−𝑥

is called the logistic function and yields an S-shaped curve.

Figure 6.1: Logistic Curve

To put the logistic model in perspective, let’s choose some explicit parameters and look at what
data arising from such a model would look like. Imagine therefore that 𝑎 = log 2 and 𝑏 = 0, so
that the probability of the event we are interested occurring is given by the formula

𝑝(𝑥) = 1
1 + 𝑒−(log 2)𝑥 = 1

1 + (.5)𝑥 .

Our data consists of counts of how often our event happened for a range of values of 𝑥. To
generate this data, we can pick 𝑥 values from the set {−3, −2, −1, 0, 1, 2, 3} yielding probabilities
{.11, .2, .33, .4, .56, .67, .8}. Now our data consists of, for each value of 𝑥, the result of 100 indepen-
dent Bernoulli trials with probability 𝑝(𝑥). For example, we might find that our event occurred
{10, 18, 38, 50, 69, 78, 86} times respectively for each of the 𝑥 values. As you can see, the event
occurs more frequently when 𝑥 is large, although the number of occurrences is still random.

6.1 Likelihood and Logistic Regression

In applications, our goal is to choose the parameters of a logistic model to accurately predict the
likelihood of the event under study occurring as a function of the measured parameter. Let’s
imagine that we collected the data that we generated above, without knowing that it’s source was
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a logistic model. So Table 6.1 shows the number of times the event occurred, for each of the
measured values of the 𝑥 parameter.
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6 Logistic Regression

Table 6.1: Sample Data
𝑥 -3 -2 -1 0 1 2 3
Occurrences (out of 100) 10 18 38 50 69 78 86

Our objective now is to find a logistic model which best explains this data. Concretely, we need to
estimate the coefficients 𝑎 and 𝑏 that yield

𝑝(𝑥) = 1
1 + 𝑒−𝑎𝑥−𝑏 (6.2)

where the resulting probabilities best estimate the data. As we have seen, this notion of “best” can
have different interpretations. For example, we could approach this from a Bayesian point of view,
adopt a prior distribution on the parameters 𝑎 and 𝑏, and use the data to obtain this prior and
obtain a posterior distribution on 𝑎 and 𝑏. For this first look at logistic regression, we will instead
adopt a “maximum likelihood” notion of “best” and ask what is the most likely choice of 𝑎 and 𝑏
to yield this data.

To apply the maximum likelihood approach, we need to ask “for (fixed, but unknown) values of 𝑎
and 𝑏, what is the likelihood that a logistic model with those parameters would yield the data we
have collected?” Each column in Table 6.1 represents 100 Bernoulli trials with a fixed probability
𝑝(𝑥). So, for example, the chance 𝑞 of obtaining 10 positive results with 𝑥 = −3 is given by

𝑞(−3) = 𝐶𝑝(−3)10(1 − 𝑝(−3))90

where 𝐶 is a constant (it would be a binomial coefficient). Combining this for different values of
𝑥, we see that the likelihood of the data is the product

𝐿(𝑎, 𝑏) = 𝐶′𝑝(−3)10(1 − 𝑝(−3))90𝑝(−2)18(1 − 𝑝(−2))82 ⋯ 𝑝(3)86(1 − 𝑝(3))14

where 𝐶′ is another constant. Each 𝑝(𝑥) is a function of the parameters 𝑎 and 𝑏, so all together
this is a function of those two parameters. Our goal is to maximize it.

One step that simplifies matters is to consider the logarithm of the likelihood:

log𝐿(𝑎, 𝑏) =
6

∑
𝑖=0

[𝑥𝑖 log(𝑝(𝑥𝑖)) + (100 − 𝑥𝑖) log(1 − 𝑝(𝑥𝑖))] + 𝐶″

where 𝐶″ is yet another constant. Since our ultimate goal is to maximize this, the value of 𝐶″ is
irrelevant and we can drop it.

6.1.1 Another point of view on logistic regression

In Table 6.1 we summarize the results of our experiments in groups by the value of the 𝑥 parame-
ter. We can think of the data somewhat differently, by instead considering each event separately,
corresponding to a parameter value 𝑥 and an outcome 0 or 1. From this point of view the data
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summarized in Table 6.1 would correspond to a vector with 700 rows. The first 100 rows (corre-
sponding to the first column of the table) would have first entry −3, the next 100 would have −2,
or so on. So our parameter values form a vector 𝑋. Meanwhile, the outcomes form a vector 𝑌
with entries 0 or 1.

More generally, imagine we are studying our advertising data and, for each potential customer, we
record how many times they saw our ad. We create a vector 𝑋 whose entries are these numbers.
Then we create another vector 𝑌 , of the same length, whose entries are either 0 or 1 depending of
whether or not the customer purchased our product.

One way to think about logistic regression in this setting is that we are trying to fit a function
that, given the value 𝑥𝑖, tries to yield the corresponding value 𝑦𝑖. However, instead of finding a
deterministic function, as we did in linear regression, instead we try to fit a logistic function that
captures the likelihood that the 𝑦-value is a 1 given the 𝑥-value. This “curve-fitting perspective”
is why this is considered a regression problem.

If, as above, we think of each row of the matrix as an independent trial, then the chance that 𝑦𝑖 = 1
is 𝑝(𝑥𝑖) and the chance that 𝑦𝑖 = 0 is 1 − 𝑝(𝑥𝑖), where 𝑝(𝑥) is given by the logistic function as in
Equation 6.2. The likelihood of the results we obtained is therefore:

𝐿(𝑎, 𝑏) = 𝐶
𝑁−1
∏
𝑖=0

𝑝(𝑥𝑖)𝑦𝑖(1 − 𝑝(𝑥𝑖))(1−𝑦𝑖)

where 𝐶 is a constant and we are exploiting the trick that, since 𝑦𝑖 is either zero or one, 1 − 𝑦𝑖 is
correspondingly one or zero. Thus only 𝑝(𝑥𝑖) or 1 − 𝑝(𝑥𝑖) occurs in each term of the product. If
we group the terms according to 𝑥𝑖 we obtain our earlier formula for 𝐿(𝑎, 𝑏).

This expresssion yields an apparently similar formula for the log-likelihood (up to an irrelevant
constant):

log𝐿(𝑋, 𝑎, 𝑏) =
𝑁−1
∑
𝑖=0

𝑦𝑖 log 𝑝(𝑥𝑖) + (1 − 𝑦𝑖) log(1 − 𝑝(𝑥𝑖)).

Using vector notation, this can be further simplified, where again we drop irrelevant constants:

log𝐿(𝑋, 𝑎, 𝑏) = 𝑌 ⋅ log 𝑝(𝑋) + (1 − 𝑌 ) ⋅ log(1 − 𝑝(𝑋)).

To be absolutely concrete, in this formula, 𝑝(𝑋) is a vector

𝑝(𝑋) = [𝑝(𝑥𝑖)]𝑁−1
𝑖=0 = [ 1

1 + 𝑒−𝑎𝑥𝑖−𝑏 ]
𝑁−1

𝑖=0

so its entries are functions of the unknown parameters 𝑎 and 𝑏.

We might naively try to maximize this by taking the derivatives with respect to 𝑎 and 𝑏 and setting
them to zero, but this turns out to be impractical. So we need a different approach to finding the
parameters 𝑎 and 𝑏 which maximize this likelihood function. We will return to this problem later,
but before we do so we will look at some generalizations and broader applications of the logistic
model.

95



6 Logistic Regression

6.1.2 Logistic regression with multiple features

The next generalization we can consider of the logistic model is the situation where the log-odds
of our event of interest depend linearly on multiple parameters. In other words, we have

log 𝑝
1 − 𝑝 = 𝑚0𝑥0 + 𝑚1𝑥1 + ⋯ + 𝑚𝑘−1𝑥𝑘−1 + 𝑏

where the 𝑎𝑖 and 𝑏 are constants. Under this model, notice that the incremental effects of changes
to the different parameters 𝑥𝑖 have independent effects on the probability. So, for example, if 𝑥1
were the number of times our potential customer saw an online advertisement and 𝑥2 were the
number of times they saw a print advertisement, by adopting this model we are assuming that the
impact of seeing more online ads is completely unrelated to the impact of seeing more print ads.

The probability is again given by a sigmoid function

𝑝(𝑥1, … , 𝑥𝑘) = 1
1 + 𝑒− ∑𝑘−1

𝑖=0 𝑚𝑖𝑥𝑖+𝑏

This model has an 𝑁 × 𝑘 feature matrix whose rows are the values 𝑥0, … , 𝑥𝑘−1 for each sample.
The outcome of our experimemt is recorded in an 𝑁 × 1 column vector 𝑌 whose entries are 0 or 1.
The likelihood function is formally equivalent to what we computed in the case of a single feature,
but it will be useful to be a bit careful about vector notation.

Following the same pattern we adopted for linear regression, let 𝑋 be the 𝑁 ×(𝑘+1) matrix whose
first 𝑘 columns contain the values 𝑥𝑖 for each sample, and whose last column is all 1. Rename the
“intercept” variable as 𝑎𝑘+1 and organize these parameters into a (𝑘 + 1) × 1 matrix 𝑀 . Then

𝑝(𝑋) = 𝜎(𝑋𝑀)

and our likelihood becomes

log𝐿(𝑀) = 𝑌 ⋅ log𝜎(𝑋𝑀) + (1 − 𝑌 ) ⋅ (1 − log𝜎(𝑋𝑀)). (6.3)

6.2 Finding the maximum likelihood solution by gradient descent

Given a set of features 𝑋 and targets 𝑌 for a logistic model, we now want to find the values 𝑀
so that the log-likelihood of the model for those paramters, given the data, is maximized. While
in linear regression we could find a nice closed form solution to this problem, the presence of the
non-linear function 𝜎(𝑥) in the likelihood makes that impossible for logistic regression. Thus we
need to use a numerical approximation. The most straightforward such method is called gradient
descent. It is at the foundation of many numerical optimization algorithms, and so while we will
develop it here for logistic regression we will have other opportunities to apply it and we will discuss
it more thoroughly on its own later.
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6.3 Gradient Descent and Logistic Regression

We can use gradient descent, as discussed in Chapter 5, to find the maximum likelihood set of
parameters for our logistic model. As we saw earlier, in Equation 6.3, we have the log likelihood
function

log𝐿(𝑀) = 𝑌 ⋅ log𝜎(𝑋𝑀) + (1 − 𝑌 ) ⋅ log(1 − 𝜎(𝑋𝑀))

where 𝑌 are the target 0/1 values, 𝑋 is our 𝑁 × (𝑘 + 1) data matrix whose last column is all ones,
and 𝑀 is the 𝑘 + 1 × 1 column vector of unknown parameters. Since gradient descent is naturally
a minimizing algorithm, we will minimize the function −𝐿(𝑀).

The key piece of information that we need is the gradient −∇𝐿, where the variables are the entries
of 𝑀 . The complicating features is the presence of the nonlinear function 𝜎, so let’s start with a
simple observation about this function.

Lemma: The logistic function 𝜎(𝑥) satisfies the differential equation

𝑑𝜎
𝑑𝑥 = 𝜎(𝑥)(1 − 𝜎(𝑥)).

Proof: Since
𝜎(𝑥) = 1

1 + 𝑒−𝑥 ,

1 − 𝜎(𝑥) = 𝑒−𝑥

1 + 𝑒−𝑥 .

Then we calculate
𝑑𝜎
𝑑𝑥 = ( 1

(1 + 𝑒−𝑥))
2

𝑒−𝑥

= ( 1
1 + 𝑒−𝑥 ) ( 𝑒−𝑥

1 + 𝑒−𝑥 )

= 𝜎(𝑥)(1 − 𝜎(𝑥))
which is what we claimed.

We apply this differential equation to compute the gradient of 𝐿.

Theorem 6.1. Proposition: The gradient −∇𝐿(𝑀) is given by

−∇ log𝐿(𝑀) = 𝑋⊺(𝜎(𝑋𝑀) − 𝑌 ).

Notice that the right side of this equation yields a (𝑘 + 1) × 1 column vector. The entries of this
vector are the partial derivatives with respect to the coefficients 𝑚𝑖 for 𝑖 = 0, … , 𝑘.
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Proof: This is yet another exercise in the chain rule and keeping track of indices. Let’s first look
at the term 𝑌 ⋅ log𝜎(𝑋𝑀). Writing it out, we have

𝑌 ⋅ log𝜎(𝑋𝑀) =
𝑁−1
∑
𝑖=0

𝑦𝑖 log𝜎(
𝑘

∑
𝑗=0

𝑥𝑖𝑗𝑚𝑗).

Applying 𝜕/𝜕𝑚𝑠 to this yields
𝑁−1
∑
𝑖=0

𝑦𝑖(1 − 𝜎(
𝑘

∑
𝑗=0

𝑥𝑖𝑗𝑚𝑗))𝑥𝑖𝑠

where we’ve used the chain rule and the differential equation for 𝜎 discussed above. At the same
time, we can apply 𝜕/𝜕𝑚𝑠 to the second term (1 − 𝑌 ) ⋅ log(1 − 𝜎(𝑋𝑀)) and obtain

−
𝑁−1
∑
𝑖=0

(1 − 𝑦𝑖)𝜎(
𝑘

∑
𝑗=0

𝑥𝑖𝑗𝑚𝑗)𝑥𝑖𝑠.

The term ∑𝑁−1
𝑖=0 𝑦𝑖𝜎(∑𝑘

𝑗=0 𝑥𝑖𝑗𝑚𝑗)𝑥𝑖𝑠 cancels, yielding

𝜕𝐿(𝑀)
𝑚𝑠

= −
𝑁−1
∑
𝑖=0

(𝑦𝑖 − 𝜎(
𝑘

∑
𝑗=0

𝑥𝑖𝑗𝑚𝑗))𝑥𝑖𝑠.

Since our weights 𝑀 are naturally a (𝑘+1)×1 column vector, looked at properly this is our desired
formula:

−∇ log𝐿(𝑀) = 𝑋⊺(𝜎(𝑋𝑀) − 𝑌 ).
Since the right side is an (𝑘+1)×𝑁 matrix times an 𝑁 ×1 column vector, the result is a (𝑘+1)×1
column vector whose entries are the partial derivatives of − log𝐿(𝑀) with respect to the weights
𝑚𝑠.

6.3.1 Gradient Descent on our synthetic data

Now we can apply gradient descent to find a maximum likelihood logistic model for the sample
data that we generated from the logistic model and reported in Table 6.1. With the probability
given as

𝑝(𝑥) = 1
1 + 𝑒−𝑎𝑥−𝑏

we make an initial guess of 𝑎 = 1 and 𝑏 = 0 set a learning rate 𝜈 = .001, and run the gradient
descent algorithm for 30 iterations. We plot the negative log-likelihood for this algorithm one the
left in Figure 6.2, where we see that it drops swiftly to a minimum value. The corresponding
parameter values are 𝑎 = .6717 and 𝑏 = −.0076, and the fit of the the corresponding logistic curve
to the observed data is shown on the right in Figure 6.2.

The parameters used to generate the data are close to this; they were 𝑎 = 𝑙𝑜𝑔(2) =.6931$ and
𝑏 = 0.

98



6.3 Gradient Descent and Logistic Regression

Figure 6.2: Max Likelihood Gradient Descent for Logistic Fitting

6.3.2 Gradient Descent and Logistic Regression on “real” data

We conclude this first look at logistic regression and gradient descent by analyzing some simple real
data. This dataset consists of about 2200 customers who patronize a certain food store. Among
the features in the data set is a field giving the total dollars spent at the store by a customer; we
will study that feature and its relationship to the question of whether or not the customer accepted
a special offer from the store. (see [4] for the original data source).

Figure 6.3: Food Marketing Data: Histograms of Expenditures and Response

The two plots in Figure 6.3 summarize the data. The first plot is a histogram showing the amounts
spent by the customers; the second shows the distribution of responses.

We would like to know how expenditures increase the likelihood of customers accepting our offer.
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We therefore fit a logistic model to the data. The result is shown in Figure 6.4.

Figure 6.4: Logistic Model for Food Marketing

6.4 Logistic Regression and classification

Beyond the kind of probability prediction that we have discussed up to this point, logistic regression
is one of the most powerful techniques for attacking the classification problem. Let’s start our
discussion with a sample problem that is a simplified version of one of the most famous machine
learning benchmark problems, the MNIST (Modified National Institute of Science and Technology)
dataset of handwritten numerals. This dataset consists of 60000 labelled grayscale images of
handwritten digits from 0 to 9. Each image is stored as a 28𝑥28 array of integers from 0 to 255.
Each cell of the array corresponds to a “pixel” in the image, and the contents of that cell is a
grayscale value. See [5] for the a more detailed description of how the dataset was constructed.

In Figure 6.5 is a picture of a handwritten “1” from the MNIST dataset.

Classification Problem for MNIST: Given a 28𝑥28 array of grayscale values, determine which
digit is represented.

At first glance, this does not look like a logistic regression problem. To make the connection clearer,
let’s simplify the problem and imagine that our database contains only labelled images of zeros
and ones – we’ll worry about how to handle the full problem later. So now our task is to determine
which images are zeros, and which are ones.

Our approach will be to view each image as a vector of length 784 = 28 ∗ 28 by stringing the pixel
values row by row into a one dimensional vector, which following our conventions yields a matrix
of size 𝑁 × 784 where 𝑁 is the number of images. Since we may also need an “intercept”, we add a
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Figure 6.5: Handwritten One from MNIST
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6 Logistic Regression

column of 1’s to our images yielding a data matrix 𝑋 of size 𝑁 × 785. The labels 𝑦 form a column
vector of size 𝑁 containing zeros and ones.

We will also simplify the data but converting the gray-scale images to monochrome by converting
gray levels up to 128 as “white” and beyond 128 as “black”.

The logistic regression approach asks us to find the “best” vector 𝑀 so that, for a given image
vector 𝑥 (extended by adding a one at the end), the function

𝑝(𝑥) = 1
1 + 𝑒−𝑥𝑀

is close to 1 if 𝑥 represents a one, and is close to zero if 𝑥 represents zero. Essentially we think of
𝑝(𝑥) as giving the probability that the vector 𝑥 represents an image of a one. If we want a definite
choice, then we can set a threshold value 𝑝0 and say that the image 𝑥 is a one if 𝑝(𝑥) > 𝑝0 and
zero otherwise. The natural choice of 𝑝0 = .5 amounts to saying that we choose the more likely of
the two options under the model.

Since we are applying the logistic model we are assuming:

• that the value of each pixel in the image contributes something towards the chance of the
total image being one;

• and the different pixels have independent, and additive effects on the odds of getting a one.

If we take this point of view, then we can ask for the vector 𝑀 that is most likely to account for
the labellings, and we can use our maximum likelihood gradient descent method to find 𝑀 .

This approach is surprisingly effective. With the MNIST zeros and ones, and the gradient descent
method discussed above, one can easily find 𝑀 so that the logistic model predicts the correct
classification with accuracy in the high 90% range.

6.4.1 Weights as filters

One interesting aspect of using logistic regression on images for classification is that the we can
interpret the optimum set of coefficients 𝑀 as a kind of filter for our images. Remember that 𝑀
is a vector with 785 entries, the last of which is an “intercept”.
The logistic model says that, for an image vector 𝑥, the log-odds that the image is a one is given
by

log 𝑝
1 − 𝑝 =

783
∑
𝑖=0

𝑀𝑖𝑥𝑖 + 𝑀784.

This means that if the value of 𝑀𝑖 is positive, then large values in the 𝑖𝑡ℎ pixel increase the chance
that our image is a one; while if 𝑀𝑖 is negative, large values decrease the chance. If 𝑀𝑖 is negative,
the reverse is true. However, the values 𝑥𝑖 are the gray scale “darkness” of the image, so the entries
of 𝑀 emphasize or de-emphasize dark pixels according to whether that dark pixel is more or less
likely to occur in a one compared to a zero.

This observation allows us to interpret the weights 𝑀 as a kind of “filter” for the image. In fact,
if we rescale the entries of 𝑀 (omitting the intercept) so that they lie between 0 and 255, we can
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6.5 Multiclass Logistic Regression

arrange them as a 28 × 28 array and plot them as an image. The result of doing this for a selection
of MNIST zeros and ones is shown on the left in Figure 6.6. The red (or positive) weights in the
middle of the image tell us that if those pixels are dark, the image is more likely to be a one; the
blue (or negative) weights scattered farther out tell us that if those pixels are dark, the image is
more likely to be a zero.

What’s important to notice here is that we did not design this “filter” by hand, based on our under-
standing of the differences between a handwritten zero and one; instead, the algorithm “learned”
the “best” filter to optimize its ability to distinguish these digits.

Here’s another example. Suppose we redo the MNIST problem above, but we try to distinguish
3’s from 8’s.
We have about 4500 of each digit, and we label the 3’s with zero and the 8’s with one. Then
we use our maximum likelihood optimization. In this case, the filter is shown on the bottom in
Figure 6.6.

6.5 Multiclass Logistic Regression

One could attack the problem of classifying the ten distinct classes of digits by, for example,
labelling all of the zeros as class zero and everything else as class one, and finding a set of weights
that distinguishes zero from everything else. Then, in turn, one could do the same for each of the
other digits. Given an unknown image, this would yield a set of probabilities from which one could
choose the most likely class. This type of classification is called “one vs rest”, for obvious reasons.
It seems more natural, however, to construct a model that, given an image, assigns a probability
that it belongs to each of the different possibilities. It is this type of multiclass logistic regression
that we will study now.

Our goal is to build a model that, given an unknown image, returns a vector of ten probabilities,
each of which we can interpret as the chance that our unknown image is in fact of a particular
digit. If we know the image’s class, then it’s probability vector should be nine zeros with a single
one in the position corresponding to the digit. So, for example, if our image is of a two, then the
vector of probabilities

[𝑝0 𝑝1 𝑝2 ⋯ 𝑝8 𝑝9] = [0 0 1 ⋯ 0 0]

where 𝑝𝑖 is the probability that our image is the digit 𝑖. Notice also that the probabilities 𝑝𝑖 must
sum to one. We encode the class membership of our samples by constructing an 𝑁 × 𝑟 matrix 𝑌 ,
each row of which has a one in column 𝑗 if that sample belongs to class 𝑗, and zeros elsewhere.
This type of representation is sometimes called “one-hot” encoding.

So let’s assume we have 𝑁 data points, each with 𝑘 features, and a one-hot encoded, 𝑁 × 𝑟 matrix
of labels 𝑌 encoding the data into 𝑟 classes. As usual, we add an “extra” feature, which is the
constant 1 for each sample, to account for the “intercept”. So our data matrix will be 𝑁 ×(𝑘+1).
Our goal will be to find a (𝑘 + 1) × 𝑟 matrix of “weights” 𝑀 so that, for each sample, we compute
𝑟 values, given by the rows of the matrix 𝑋𝑀 . These 𝑟 values are linear functions of the features,
but we need probabilities. In the one-dimensional case, we used the logistic function 𝜎 to convert

103



6 Logistic Regression

Figure 6.6: Rescaled weights (blue is negative). Top: 0 vs 1. Bottom: 3 vs 8.
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6.5 Multiclass Logistic Regression

our linear function to probabilities. In this higher dimensional case we use a generalization of 𝜎
called the “softmax” function.

Definition: Let 𝐹 ∶ R𝑟 → R𝑟 be the function

𝐹(𝑧1, … , 𝑧𝑟) =
𝑟

∑
𝑗=1

𝑒𝑧𝑖

and let 𝜎 ∶ R𝑟 → R𝑟 be the function

𝜎(𝑧1, … , 𝑧𝑛) = [𝑒𝑧1
𝐹 ⋯ 𝑒𝑧𝑟

𝐹 ] .

Notice that the coordinates of the vector 𝜎(𝑧1, … , 𝑧𝑛) are all between 0 and 1, and their sum is
one.

Our multiclass logistic model will say that the probability vector that gives the probabilities that
a particular sample belongs to a particular class is given by the rows of the matrix 𝜎(𝑋𝑀), where
𝜎(𝑋𝑀) means applying the function 𝜎 to each row of the 𝑁 ×𝑟 matrix 𝑋𝑀 . For later computation,
if:

• 𝑥 = 𝑋[𝑖, ∶] is the 𝑘 + 1-entry feature vector of a single sample – a row of the data matrix 𝑋
• 𝑚𝑗 = 𝑀[∶, 𝑗] is the 𝑘 + 1-entry column vector corresponding to the 𝑗𝑡ℎ column of 𝑀 ,

then the probability vector [𝑝𝑡]𝑟𝑡=1 has entries

𝑝𝑡(𝑥; 𝑀) = 𝑒𝑥⋅𝑚𝑡

∑𝑟
𝑠=1 𝑒𝑥⋅𝑚𝑠

.

6.5.1 Multiclass logistic regression - the likelihood

The probability vector [𝑝𝑡(𝑥; 𝑀)] encodes the probabilities that the 𝑥-value belongs to each of the
possible classes. That is,

𝑝𝑗(𝑥; 𝑀) = The chance that x is in class j.

We have captured the class membership of the samples in a (𝑘 + 1) × 𝑟 matrix 𝑌 which is “one-hot”
encoded. Each row of this matrix has is zero in each place, except in the “correct” class, where it
is one. Let 𝑦 = 𝑌 [𝑖, ∶] be the 𝑖𝑡ℎ row of this matrix, so it is an 𝑟-entry row vector which is 1 in the
position giving the “correct” class for our sample 𝑥.
So we can represent the chance that sample 𝑗 belongs to class 𝑖 as

𝑃( sample i in class j) =
𝑟

∏
𝑠=1

𝑝𝑠(𝑥; 𝑀)𝑦𝑠 .

Taking the logarithm, we find

log𝑃 =
𝑟

∑
𝑠=1

𝑦𝑠 log 𝑝𝑠(𝑥; 𝑀).
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6 Logistic Regression

Since each sample is independent, the total likelihood is the product of these probabilites, and the
log-likelihood the corresponding sum:

log𝐿(𝑀) = ∑
𝑋,𝑌

𝑟
∑
𝑠=1

𝑦𝑠 log 𝑝𝑠(𝑥; 𝑀).

where the sum is over the 𝑁 rows of 𝑋 and 𝑌 . This is equivalent to the matrix expression

log𝐿(𝑀) = trace(𝑌 ⊺ log𝑃) = trace(𝑌 ⊺ log𝜎(𝑋𝑀))

This is the multiclass generalization of Equation 6.3. To see the connection, notice that, in the
case where we have only two classes, 𝑦1 = 1 − 𝑦0 and 𝑝1(𝑥; 𝑀) = 1 − 𝑝0(𝑥; 𝑀), so this sum is the
same as in the two class situation.

6.5.2 Multiclass logistic regression - the gradient.

To find the “best-fitting” multiclass logistic model by gradient descent, we need an expression for
the gradient of the likelihood 𝐿(𝑀). As with all of these calculations, this is an exercise in the
chain rule. We start with the formula

𝑝𝑠(𝑥; 𝑀) = 𝑒𝑥⋅𝑚𝑠

∑𝑟
𝑡=1 𝑒𝑥⋅𝑚𝑡

The gradient of this is made up of the derivatives with respect to the 𝑚𝑏𝑞 where 𝑏 = 0, … , 𝑘 and
𝑞 = 1, … , 𝑟 so its natural to think of this gradient as a (𝑘 + 1) × 𝑟 matrix, the same shape as 𝑀 .
Remember that each 𝑚𝑠 is the 𝑠𝑡ℎ column of 𝑀 so is made up of 𝑚𝑏𝑠 for 𝑏 = 0, … , 𝑘.
Looking at

𝜕𝑝𝑠
𝜕𝑚𝑏𝑞

there are two cases to consider. The first is when 𝑞 and 𝑠 are different, so the numerator of 𝑝𝑠
doesn’t involve 𝑚𝑝𝑞. In this case the derivative is

𝜕𝑝𝑠
𝜕𝑚𝑏𝑞

= − 𝑒𝑥⋅𝑚𝑠𝑒𝑥⋅𝑚𝑞𝑥𝑏
(∑𝑟

𝑡=1 𝑒𝑥⋅𝑚𝑡)2 = −𝑝𝑠𝑝𝑞𝑥𝑏

In vector terms:
[ 𝜕𝑝𝑠
𝜕𝑚𝑏𝑞

]𝑘𝑏=1 = −𝑝𝑞𝑝𝑠[𝑥𝑏]𝑘𝑏=1

as an equality of 𝑘 + 1-entry row vectors. This can be written more simply as a vector equation:

𝜕𝑝𝑠
𝜕𝑚𝑞

= −𝑝𝑞𝑝𝑠𝑥. (𝑞 ≠ 𝑠).

When 𝑞 = 𝑠, we have

𝜕𝑝𝑠
𝜕𝑚𝑏𝑠

= 𝑒𝑥⋅𝑚𝑏𝑠𝑥𝑏
∑𝑟

𝑡=1 𝑒𝑥⋅𝑚𝑡
− 𝑒𝑥⋅𝑚𝑠𝑒𝑥⋅𝑚𝑠𝑥𝑏

(∑𝑟
𝑡=1 𝑒𝑥⋅𝑚𝑡)2 = 𝑝𝑠(1 − 𝑝𝑠)𝑥𝑏
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or in vector terms
𝜕𝑝𝑠
𝜕𝑚𝑠

= 𝑝𝑠(1 − 𝑝𝑠)𝑥⊺.

Important: The gradient on the left is properly seen as a column vector (because 𝑚𝑠 is a column
of the matrix 𝑀 , with 𝑘 + 1 entries), and since 𝑥 is a row of the data matrix, so to keep the indices
straight, we need 𝑥⊺ on the right.

Now we can use these formulae together with the expression for log𝐿(𝑀) to obtain the gradient.
Using the vector form, we have

𝜕 log𝐿(𝑀)
𝜕𝑚𝑞

= ∑
𝑋,𝑌

𝑟
∑
𝑠=1

𝑦𝑠
𝜕 log 𝑝𝑠

𝑚𝑞
.

Using our computations above, the chain rule, and the derivative of the logarithm, this is the sum

𝜕 log𝐿(𝑀)
𝜕𝑚𝑞

= ∑
𝑋,𝑌

𝑟
∑
𝑠=1

𝑦𝑠(𝐼𝑞𝑠 − 𝑝𝑞)𝑥⊺

where 𝐼𝑞𝑠 = 1 if 𝑞 = 𝑠 and zero otherwise.

Now 𝑦𝑠𝐼𝑞𝑠 is zero unless 𝑠 = 𝑞, and the sum ∑𝑟
𝑠=1 𝑦𝑠 = 1, so this simplifies further to

𝜕 log𝐿(𝑀)
𝜕𝑚𝑞

= ∑
𝑋,𝑌

(𝑦𝑞 − 𝑝𝑞)𝑥⊺.

This is equivalent to the matrix expression

∇ log𝐿(𝑀) = 𝑋⊺(𝑌 − 𝑃) = 𝑋⊺(𝑌 − 𝜎(𝑋𝑀)). (6.4)

Compare Equation 6.4 to Theorem 6.1 and we see that the form is identical whether in the two-class
or multi-class case if we set things up properly.

Algorithm 6.1 (Multiclass Gradient Descent). Given:

• an 𝑁 × (𝑘 + 1) data matrix 𝑋 whose last column is all 1,
• an 𝑁 × 𝑟 matrix 𝑌 that “one-hot” encodes the labels of the classification problem;
• a random (𝑘 + 1) × 𝑟 matrix 𝑀 of initial guesses for the parameters
• a “learning rate” 𝜈,

Iterate:
𝑀 = 𝑀 + 𝜈𝑋⊺(𝑌 − 𝜎(𝑋𝑀))

until 𝑀 changes by less than some tolerance.
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6.6 Batch Descent

A look at the formulae for the gradient (see Equation 6.4) tells us that each iteration of the
algorithm requires us to multiply the entire data matrix times the weights (to compute 𝑋𝑀) and
then again to multiply by 𝑋⊺. In practice, 𝑋 may have a very large number of rows, and working
with the entire matrix may be impractical.

One simple solution to this is to work with the data in batches. Each main iteration of gradient
descent is made up of smaller steps, each of which works with a subset of the data matrix. These
smaller steps could be single rows of the data matrix, or submatrices.
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7.1 Introduction

Suppose that we are given a collection of data made up of samples from two different classes, and
we would like to develop an algorithm that can distinguish between the two classes. For example,
given a picture that is either a dog or a cat, we’d like to be able to say which of the pictures are
dogs, and which are cats. For another example, we might want to be able to distinguish “real”
emails from “spam.” This type of problem is called a classification problem.

Typically, one approaches a classification problem by beginning with a large set of data for which
you know the classes, and you use that data to train an algorithm to correctly distinguish the
classes for the test cases where you already know the answer. For example, you start with a
few thousand pictures labelled “dog” and “cat” and you build your algorithm so that it does a
good job distinguishing the dogs from the cats in this initial set of training data. Then you apply
your algorithm to pictures that aren’t labelled and rely on the predictions you get, hoping that
whatever let your algorithm distinguish between the particular examples will generalize to allow it
to correctly classify images that aren’t pre-labelled.

Because classification is such a central problem, there are many approaches to it. We will see
several of them through the course of these lectures. We will begin with a particular classification
algorithm called “Support Vector Machines” (SVM) that is based on linear algebra. The SVM
algorithm is widely used in practice and has a beautiful geometric interpretation, so it will serve
as a good beginning for later discussion of more complicated classification algorithms.

Incidentally, I’m not sure why this algorithm is called a “machine”; the algorithm was introduced
in the paper [6] where it is called the “Optimal Margin Classifier” and as we shall see that is a
much better name for it.

My presentation of this material was heavily influenced by the beautiful paper [7].

7.2 A simple example

Let us begin our discussion with a very simple dataset (see [8] and [9]). This data consists of
various measurements of physical characteristics of 344 penguins of 3 different species: Gentoo,
Adelie, and Chinstrap. If we focus our attention for the moment on the Adelie and Gentoo species,
and plot their body mass against their culmen depth, we obtain the following scatterplot.

Incidentally, a bird’s culmen is the upper ridge of their beak, and the culmen depth is a measure
of the thickness of the beak. There’s a nice picture at [9] for the penguin enthusiasts.
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Figure 7.1: Penguin Scatterplot

A striking feature of this scatter plot is that there is a clear separation between the clusters of
Adelie and Gentoo penguins. Adelie penguins have deeper culmens and less body mass than
Gentoo penguins. These characteristics seem like they should provide a way to classify a penguin
between these two species based on these two measurements.

One way to express the separation between these two clusters is to observe that one can draw a
line on the graph with the property that all of the Adelie penguins lie on one side of that line and
all of the Gentoo penguins lie on the other. In Figure 7.2 I’ve drawn in such a line (which I found
by eyeballing the picture in Figure 7.1). The line has the equation

𝑌 = 1.25𝑋 + 2.

The fact that all of the Gentoo penguins lie above this line means that, for the Gentoo penguins,
their body mass in grams is at least 400 more than 250 times their culmen depth in mm. (Note
that the 𝑦 axis of the graph is scaled by 200 grams).

Gentoo mass > 250(Gentoo culmen depth) + 400

while

Adelie mass < 250(Adelie culmen depth) + 400.

Now, if we measure a penguin caught in the wild, we can compute 250(culmen depth)+400 for that
penguin and if this number is greater than the penguin’s mass, we say it’s an Adelie; otherwise, a
Gentoo. Based on the experimental data we’ve collected – the training data – this seems likely to
work pretty well.
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Figure 7.2: Penguins with Separating Line

7.3 The general case

To generalize this approach, let’s imagine now that we have 𝑛 samples and 𝑘 features (or measure-
ments) for each sample. As before, we can represent this data as an 𝑛 × 𝑘 data matrix 𝑋. In
the penguin example, our data matrix would be 344 × 2, with one row for each penguin and the
columns representing the mass and the culmen depth. In addition to this numerical data, we have
a classification that assigns each row to one of two classes. Let’s represent the classes by a 𝑛 × 1
vector 𝑌 , where 𝑦𝑖 = +1 if the 𝑖𝑡ℎ sample is in one class, and 𝑦𝑖 = −1 if that 𝑖𝑡ℎ sample is in the
other. Our goal is to predict 𝑌 based on 𝑋 – but unlike in linear regression, 𝑌 takes on the values
of ±1.
In the penguin case, we were able to find a line that separated the two classes and then classify
points by which side of the line the point was on. We can generalize this notion to higher dimensions.
Before attacking that generalization, let’s recall a few facts about the generalization to R𝑘 of the
idea of a line.

7.3.1 Hyperplanes

The correct generalization of a line given by an equation 𝑤1𝑥1 + 𝑤2𝑤2 + 𝑏 = 0 in R2 is an equation
𝑓(𝑥) = 0 where 𝑓(𝑥) is a degree one polynomial

𝑓(𝑥) = 𝑓(𝑥1, … , 𝑥𝑘) = 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑘𝑥𝑘 + 𝑏 (7.1)

It’s easier to understand the geometry of an equation like 𝑓(𝑥) = 0 in Equation 7.1 if we think of
the coefficients 𝑤𝑖 as forming a nonzero vector 𝑤 = (𝑤1, … , 𝑤𝑘) in R𝑘 and writing the formula for
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𝑓(𝑥) as
𝑓(𝑥) = 𝑤 ⋅ 𝑥 + 𝑏

.

Lemma: Let 𝑓(𝑥) = 𝑤 ⋅ 𝑥 + 𝑏 with 𝑤 ∈ R𝑘 a nonzero vector and 𝑏 a constant in R.

• The inequalities 𝑓(𝑥) > 0 and 𝑓(𝑥) < 0 divide up R𝑘 into two disjoint subsets (called half
spaces), in the way that a line in R2 divides the plane in half.

• The vector 𝑤 is normal vector to the hyperplane 𝑓(𝑥) = 0. Concretely this means that if 𝑝
and 𝑞 are any two points in that hyperplane, then 𝑤 ⋅ (𝑝 − 𝑞) = 0.

• Let 𝑝 = (𝑢1, … , 𝑢𝑘) be a point in R𝑘. Then the perpendicular distance 𝐷 from 𝑝 to the
hyperplane 𝑓(𝑥) = 0 is

𝐷 = 𝑓(𝑝)
‖𝑤‖

Proof: The first part is clear since the inequalities are mutually exclusive. For the secon part,
suppose that 𝑝 and 𝑞 satisfy 𝑓(𝑥) = 0. Then 𝑤 ⋅ 𝑝 + 𝑏 = 𝑤 ⋅ 𝑞 + 𝑏 = 0. Subtracting these two
equations gives 𝑤 ⋅ (𝑝 − 𝑞) = 0, so 𝑝 − 𝑞 is orthogonal to 𝑤.

For the third part, consider Figure 7.3. The point 𝑞 is an arbitrary point on the hyperplane defined
by the equation 𝑤 ⋅ 𝑥 + 𝑏 = 0. The distance from the hyperplane to 𝑝 is measured along the dotted
line perpendicular to the hyperplane. The dot product 𝑤 ⋅ (𝑝 − 𝑞) = ‖𝑤‖‖𝑝 − 𝑞‖ cos(𝜃) where 𝜃
is the angle between 𝑝 − 𝑞 and 𝑤 – which is complementary to the angle between 𝑝 − 𝑞 and the
hyperplane. The distance 𝐷 is therefore

𝐷 = 𝑤 ⋅ (𝑝 − 𝑞)
‖𝑤‖ .

However, since 𝑞 lies on the hyperplane, we know that 𝑤 ⋅ 𝑞 + 𝑏 = 0 so 𝑤 ⋅ 𝑞 = −𝑏. Therefore
𝑤 ⋅ (𝑝 − 𝑞) = 𝑤 ⋅ 𝑝 + 𝑏 = 𝑓(𝑝), which is the formula we seek.

Figure 7.3: Distance to a Hyperplane
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7.3.2 Linear separability and Margins

Now we can return to our classification scheme. The following definition generalizes our two
dimensional picture from the penguin data.

Definition: Suppose that we have an 𝑛 × 𝑘 data matrix 𝑋 and a set of labels 𝑌 that assign the
𝑛 samples to one of two classes. Then the labelled data is said to be linearly separable if there is
a vector 𝑤 and a constant 𝑏 so that, if 𝑓(𝑥) = 𝑤 ⋅ 𝑥 + 𝑏, then 𝑓(𝑥) > 0 whenever 𝑥 = (𝑥1, … , 𝑥𝑘)
is a row of 𝑋 – a sample – belonging to the +1 class, and 𝑓(𝑥) < 0 whenever 𝑥 belongs to the −1
class. The solutions to the equation 𝑓(𝑥) = 0 in this situation form a hyperplane that is called a
separating hyperplane for the data.

In the situation where our data falls into two classes that are linearly separable, our classification
strategy is to find a separating hyperplane 𝑓 for our training data. Then, given a point 𝑥 whose
class we don’t know, we can evaluate 𝑓(𝑥) and assign 𝑥 to a class depending on whether 𝑓(𝑥) > 0
or 𝑓(𝑥) < 0.

This definition begs two questions about a particular dataset:

1. How do we tell if the two classes are linearly separable?
2. If the two sets are linearly separable, there are infinitely many separating hyperplanes. To

see this, look back at the penguin example and notice that we can ‘wiggle’ the red line a little
bit and it will still separate the two sets. Which is the ‘best’ separating hyperplane?

Let’s try to make the first of these two questions concrete. We have two sets of points 𝐴 and 𝐵 in
R𝑘, and we want to (try to) find a vector 𝑤 and a constant 𝑏 so that 𝑓(𝑥) = 𝑤 ⋅ 𝑥 + 𝑏 takes strictly
positive values for 𝑥 ∈ 𝐴 and strictly negative ones for 𝑥 ∈ 𝐵. Let’s approach the problem by first
choosing 𝑤 and then asking whether there is a 𝑏 that will work. In the two dimensional case, this
is equivalent to choosing the slope of our line, and then asking if we can find an intercept so that
the line passes between the two classes.

In algebraic terms, we are trying to solve the following system of inequalities: given 𝑤, find 𝑏 so
that:

𝑤 ⋅ 𝑥 + 𝑏 > 0 for all 𝑥 in A

and
𝑤 ⋅ 𝑥 + 𝑏 < 0 for all 𝑥 in B.

This is only going to be possible if there is a gap between the smallest value of 𝑤 ⋅ 𝑥 for 𝑥 ∈ 𝐴 and
the largest value of 𝑤 ⋅ 𝑥 for 𝑥 ∈ 𝐵. In other words, given 𝑤 there is a 𝑏 so that 𝑓(𝑥) = 𝑤 ⋅ 𝑥 + 𝑏
separates 𝐴 and 𝐵 if

max
𝑥∈𝐵

𝑤 ⋅ 𝑥 < min
𝑥∈𝐴

𝑤 ⋅ 𝑥.

If this holds, then choose 𝑏 so that −𝑏 lies in this open interval and you will obtain a separating
hyperplane.

Proposition: The sets 𝐴 and 𝐵 are linearly separable if there is a 𝑤 so that

max
𝑥∈𝐵

𝑤 ⋅ 𝑥 < min
𝑥∈𝐴

𝑤 ⋅ 𝑥
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If this inequality holds for some 𝑤, and −𝑏 within this open interval, then 𝑓(𝑥) = 𝑤 ⋅ 𝑥 + 𝑏 is a
separating hyperplane for 𝐴 and 𝐵.

*Figure 7.4 is an illustration of this argument for a subset of the penguin data. Here, we have fixed
𝑤 = (1.25, −1) coming from the line 𝑦 = 1.25𝑥 + 2 that we eyeballed earlier. For each Gentoo
(green) point 𝑥𝑖, we computed −𝑏 = 𝑤 ⋅ 𝑥𝑖 and drew the line 𝑓(𝑥) = 𝑤 ⋅ 𝑥 − 𝑤 ⋅ 𝑥𝑖 giving a family
of parallel lines through each of the green points. Similarly for each Adelie (blue) point we drew
the corresponding line. The maximum value of 𝑤 ⋅ 𝑥 for the blue points turned out to be 1.998 and
the minimum value of 𝑤 ⋅ 𝑥 for the green points turned out to be 2.003. Thus we have two lines
with a gap between them, and any parallel line in that gap will separate the two sets.

Finally, among all the lines with this particular 𝑤, it seems that the best separating line is the one
running right down the middle of the gap between the boundary lines. Any other line in the gap
will be closer to either the blue or green set that the midpoint line is.

Figure 7.4: Lines in Penguin Data for 𝑤 = (1.25, −1)

Let’s put all of this together and see if we can make sense of it in general.

Suppose that 𝐴+ and 𝐴− are finite point sets in R𝑘 and 𝑤 ∈ R𝑘 such that

𝐵−(𝑤) = max
𝑥∈𝐴−

𝑤 ⋅ 𝑥 < min
𝑥∈𝐴+

𝑤 ⋅ 𝑥 = 𝐵+(𝑤).

Let 𝑥− be a point in 𝐴− with 𝑤 ⋅ 𝑥− = 𝐵−(𝑤) and 𝑥+ be a point in 𝐴 with 𝑤 ⋅ 𝑥+ = 𝐵+(𝑤). The
two hyperplanes 𝑓±(𝑥) = 𝑤 ⋅ 𝑥 − 𝐵± have the property that:

𝑓+(𝑥) ≥ 0 for 𝑥 ∈ 𝐴+ and 𝑓+(𝑥) < 0 for 𝑥 ∈ 𝐴−

and
𝑓−(𝑥) ≤ 0 for 𝑥 ∈ 𝐴− and 𝑓−(𝑥) > 0 for 𝑥 ∈ 𝐴+
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Hyperplanes like 𝑓+ and 𝑓−, which “just touch” a set of points, are called supporting hyperplanes.

Definition: Let 𝐴 be a set of points in R𝑘. A hyperplane 𝑓(𝑥) = 𝑤⋅𝑥+𝑏 = 0 is called a supporting
hyperplane for 𝐴 if 𝑓(𝑥) ≥ 0 for all 𝑥 ∈ 𝐴 and 𝑓(𝑥) = 0 for at least one point in 𝐴, or if 𝑓(𝑥) ≤ 0
for all 𝑥 ∈ 𝐴 and 𝑓(𝑥) = 0 for at least one point in 𝐴.

The gap between the two supporting hyperplanes 𝑓+ and 𝑓− is called the margin between 𝐴 and
𝐵 for 𝑤.

Definition: Let 𝑓+ and 𝑓− be as in the discussion above for point sets 𝐴+ and 𝐴− and vector
𝑤. Then the orthogonal distance between the two hyperplanes 𝑓+ and 𝑓− is called the geometric
margin 𝜏𝑤(𝐴+, 𝐴−) (along 𝑤) between 𝐴+ and 𝐴−. We have

𝜏𝑤(𝐴+, 𝐴−) = 𝐵+(𝑤) − 𝐵−(𝑤)
‖𝑤‖ .

Now we can propose an answer to our second question about the best classifying hyperplane.

Definition: The optimal margin 𝜏(𝐴+, 𝐴−) between 𝐴+ and 𝐴− is the largest value of 𝜏𝑤 over all
possible 𝑤 for which 𝐵−(𝑤) < 𝐵+(𝑤):

𝜏(𝐴+, 𝐴−) = max
𝑤

𝜏𝑤(𝐴+, 𝐴−).

If 𝑤 is such that 𝜏𝑤 = 𝜏 , then the hyperplane 𝑓(𝑥) = 𝑤⋅𝑥− (𝐵++𝐵−)
2 is the optimal margin classifying

hyperplane.

The optimal classifying hyperplane runs “down the middle” of the gap between the two supporting
hyperplanes 𝑓+ and 𝑓− that give the sides of the optimal margin.

We can make one more observation about the maximal margin. If we find a vector 𝑤 so that
𝑓+(𝑥) = 𝑤 ⋅ 𝑥 − 𝐵+ and 𝑓−(𝑥) = 𝑤 ⋅ 𝑥 − 𝐵− are the two supporting hyperplanes such that the gap
between them is the optimal margin, then this gap gives us an estimate on how close together the
points in 𝐴+ and 𝐴− can be. This is visible in Figure 7.4, where it’s clear that to get from a blue
point to a green one, you have to cross the gap between the two supporting hyperplanes.

Proposition: The closest distance between points in 𝐴+ and 𝐴− is greater than or equal to the
optimal margin:

min
𝑝∈𝐴+,𝑞∈𝐴−

‖𝑝 − 𝑞‖ ≥ 𝜏(𝐴+, 𝐴−)
.

Proof: We have 𝑓+(𝑝) = 𝑤 ⋅ 𝑝 − 𝐵+ ≥ 0 and 𝑓−(𝑞) = 𝑤 ⋅ 𝑞 − 𝐵− ≤ 0. These two inequalities imply
that

𝑤 ⋅ (𝑝 − 𝑞) ≥ 𝐵+ − 𝐵− > 0.
Therefore

‖𝑝 − 𝑞‖‖𝑤‖ ≥ |𝑤 ⋅ (𝑝 − 𝑞)| ≥ |𝐵+ − 𝐵−|
and so

‖𝑝 − 𝑞‖ ≥ 𝐵+ − 𝐵−

‖𝑤‖ = 𝜏(𝐴+, 𝐴−)
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If this inequality were always strict – that is, if the optimal margin equalled the minimum distance
between points in the two clusters – then this would give us an approach to finding this optimal
margin.

Unfortunately, that isn’t the case. In Figure 7.5, we show a very simple case involving only six
points in total in which the distance between the closest points in 𝐴+ and 𝐴− is larger than the
optimal margin.

Figure 7.5: Shortest distance between + and - points can be greater than the optimal margin

At least now our problem is clear. Given our two point sets 𝐴+ and 𝐴−, find 𝑤 so that 𝜏𝑤(𝐴+, 𝐴−)
is maximal among all 𝑤 where 𝐵−(𝑤) < 𝐵+(𝑤). This is an optimization problem, but unlike the
optimization problems that arose in our discussions of linear regression and principal component
analysis, it does not have a closed form solution. We will need to find an algorithm to determine 𝑤
by successive approximations. Developing that algorithm will require thinking about a new concept
known as convexity.

7.4 Convexity, Convex Hulls, and Margins

In this section we introduce the notion of a convex set and the particular case of the convex hull
of a finite set of points. As we will see, these ideas will give us a different interpretation of the
margin between two sets and will eventually lead to an algorithm for finding the optimal margin
classifier.

Definition: A subset 𝑈 of R𝑘 is convex if, for any pair of points 𝑝 and 𝑞 in 𝑈 , every point 𝑡 on
the line segment joining 𝑝 and 𝑞 also belongs to 𝑈 . In vector form, for every 0 ≤ 𝑠 ≤ 1, the point
𝑡(𝑠) = (1 − 𝑠)𝑝 + 𝑠𝑞 belongs to 𝑈 . (Note that 𝑡(0) = 𝑝, 𝑡(1) = 𝑞, and so 𝑡(𝑠) traces out the segment
joining 𝑝 to 𝑞.)
*Figure 7.6 illustrates the difference between convex sets and non-convex ones.
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Figure 7.6: Convex vs Non-Convex Sets

The key idea from convexity that we will need to solve our optimization problem and find the
optimal margin is the idea of the convex hull of a finite set of points in R𝑘.

Definition: Let 𝑆 = {𝑞1, … , 𝑞𝑁} be a finite set of 𝑁 points in R𝑘. The convex hull 𝐶(𝑆) of 𝑆 is
the set of points

𝑝 =
𝑁

∑
𝑖=1

𝜆𝑖𝑞𝑖

as 𝜆1, … , 𝜆𝑁 runs over all positive real numbers such that

𝑁
∑
𝑖=1

𝜆𝑖 = 1.

There are a variety of ways to think about the convex hull 𝐶(𝑆) of a set of points 𝑆, but perhaps
the most useful is that it is the smallest convex set that contains all of the points of 𝑆. That is the
content of the next lemma.

Lemma: 𝐶(𝑆) is convex. Furthermore, let 𝑈 be any convex set containing all of the points of 𝑆.
Then 𝑈 contains 𝐶(𝑆).
Proof: To show that 𝐶(𝑆) is convex, we apply the definition. Let 𝑝1 and 𝑝2 be two points in 𝐶(𝑆),
so that let 𝑝𝑗 = ∑𝑁

𝑖=1 𝜆(𝑗)
𝑖 𝑞𝑖 where ∑𝑁

𝑖=1 𝜆(𝑗)
𝑖 = 1 for 𝑗 = 1, 2. Then a little algebra shows that

(1 − 𝑠)𝑝1 + 𝑠𝑝2 =
𝑁

∑
𝑖=1

(𝑠𝜆(1)
𝑖 + (1 − 𝑠)𝜆(2)

𝑖 )𝑞𝑖

and ∑𝑁
𝑖=1(𝑠𝜆(1)

𝑖 + (1 − 𝑠)𝜆(2)
𝑖 ) = 1. Therefore all of the points (1 − 𝑠)𝑝1 + 𝑠𝑝2 belong to 𝐶(𝑆), and

therefore 𝐶(𝑆) is convex.
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For the second part, we proceed by induction. Let 𝑈 be a convex set containing 𝑆. Then by the
definition of convexity, 𝑈 contains all sums 𝜆𝑖𝑞𝑖 + 𝜆𝑗𝑞𝑗 where 𝜆𝑖 + 𝜆𝑗 = 1. Now suppose that 𝑈
contains all the sums ∑𝑁

𝑖=1 𝜆𝑖𝑞𝑖 where exactly 𝑚 − 1 of the 𝜆𝑖 are non-zero for some 𝑚 < 𝑁 .
Consider a sum

𝑞 =
𝑁

∑
𝑖=1

𝜆𝑖𝑞𝑖

with exactly 𝑚 of the 𝜆𝑖 ≠ 0. For simplicity let’s assume that 𝜆𝑖 ≠ 0 for 𝑖 = 1, … , 𝑚. Now let
𝑇 = ∑𝑚−1

𝑖=1 𝜆𝑖 and set

𝑞′ =
𝑚−1
∑
𝑖=1

𝜆𝑖
𝑇 𝑞𝑖.

This point 𝑞′ belongs to 𝑈 by the inductive hypothesis. Also, (1−𝑇 ) = 𝜆𝑚. Therefore by convexity
of 𝑈 ,

𝑞 = (1 − 𝑇 )𝑞𝑚 + 𝑇 𝑞′

also belongs to 𝑈 . It follows that all of 𝐶(𝑆) belongs to 𝑈 .

In Figure 7.7 we show our penguin data together with the convex hull of points corresponding to
the two types of penguins. Notice that the boundary of each convex hull is a finite collection of
line segments that join the “outermost” points in the point set.

Figure 7.7: The Convex Hull

One very simple example of a convex set is a half-plane. More specifically, if 𝑓(𝑥) = 𝑤 ⋅ 𝑥 + 𝑏 = 0
is a hyperplane, then the two “sides” of the hyperplane, meaning the subsets {𝑥 ∶ 𝑓(𝑥) ≥ 0} and
{𝑥 ∶ 𝑓(𝑥) ≤ 0}, are both convex. (This is exercise 1 in Section 7.7 ).

As a result of this observation, and the Lemma above, we can conclude that if 𝑓(𝑥) = 𝑤 ⋅ 𝑥 + 𝑏 = 0
is a supporting hyperplane for the set 𝑆 – meaning that either 𝑓(𝑥) ≥ 0 for all 𝑥 ∈ 𝑆, or 𝑓(𝑥) ≤ 0

118



7.4 Convexity, Convex Hulls, and Margins

for all 𝑥 ∈ 𝑆, with at least one point 𝑥 ∈ 𝑆 such that 𝑓(𝑥) = 0 – then 𝑓(𝑥) = 0 is a supporting
hyperplane for the entire convex hull. After all, if 𝑓(𝑥) ≥ 0 for all points 𝑥 ∈ 𝑆, then 𝑆 is contained
in the convex set of points where 𝑓(𝑥) ≥ 0, and therefore 𝐶(𝑆) is contained in that set as well.

Interestingly, however, the converse is true as well – the supporting hyperplanes of 𝐶(𝑆) are exactly
the same as those for 𝑆.
Lemma: Let 𝑆 be a finite set of points in R𝑘 and let 𝑓(𝑥) = 𝑤 ⋅ 𝑥 + 𝑏 = 0 be a supporting
hyperplane for 𝐶(𝑆). Then 𝑓(𝑥) is a supporting hyperplane for 𝑆.
Proof: Suppose 𝑓(𝑥) = 0 is a supporting hyperplane for 𝐶(𝑆). Let’s assume that 𝑓(𝑥) ≥ 0 for all
𝑥 ∈ 𝐶(𝑆) and 𝑓(𝑥∗) = 0 for a point 𝑥∗ ∈ 𝐶(𝑆), since the case where 𝑓(𝑥) ≤ 0 is identical. Since
𝑆 ⊂ 𝐶(𝑆), we have 𝑓(𝑥) ≥ 0 for all 𝑥 ∈ 𝑆. To show that 𝑓(𝑥) = 0 is a supporting hyperplane, we
need to know that 𝑓(𝑥) = 0 for at least one point 𝑥 ∈ 𝑆.
Let 𝑥′ be the point in 𝑆 where 𝑓(𝑥′) is minimal among all 𝑥 ∈ 𝑆. Note that 𝑓(𝑥′) ≥ 0. Then the
hyperplane 𝑔(𝑥) = 𝑓(𝑥)−𝑓(𝑥′) has the property that 𝑔(𝑥) ≥ 0 on all of 𝑆, and 𝑔(𝑥′) = 0. Since the
halfplane 𝑔(𝑥) ≥ 0 is convex and contains all of 𝑆, we have 𝐶(𝑆) contained in that halfplane. So,
on the one hand we have 𝑔(𝑥∗) = 𝑓(𝑥∗) − 𝑓(𝑥′) ≥ 0. On the other hand 𝑓(𝑥∗) = 0, so −𝑓(𝑥′) ≥ 0,
so 𝑓(𝑥′) ≤ 0. Since 𝑓(𝑥′) is also greater or equal to zero, we have 𝑓(𝑥′) = 0, and so we have found
a point of 𝑆 on the hyperplane 𝑓(𝑥) = 0. Therefore 𝑓(𝑥) = 0 is also a supporting hyperplane for
𝑆.
This argument can be used to give an alternative description of 𝐶(𝑆) as the intersection of all
halfplanes containing 𝑆 arising from supporting hyperplanes for 𝑆. This is exercise 2 in Section 7.7.
It also has as a corollary that 𝐶(𝑆) is a closed set.

Lemma: 𝐶(𝑆) is compact.

Proof: Exercise 2 in Section 7.7 shows that it is the intersection of closed sets in R𝑘, so it is closed.
Exercise 3 shows that 𝐶(𝑆) is bounded. Thus it is compact.

Now let’s go back to our optimal margin problem, so that we have linearly separable sets of points
𝐴+ and 𝐴−. Recall that we showed that the optimal margin was at most the minimal distance
between points in 𝐴+ and 𝐴−, but that there could be a gap between the minimal distance and
the optimal margin – see Figure 7.5 for a reminder.

It turns out that by considering the minimal distance between 𝐶(𝐴+) and 𝐶(𝐴−), we can “close
this gap.” The following proposition shows that we can change the problem of finding the optimal
margin into the problem of finding the closest distance between the convex hulls of 𝐶(𝐴+) and
𝐶(𝐴−). The following proposition generalizes the Proposition at the end of Section 7.3.2.

Proposition: Let 𝐴+ and 𝐴− be linearly separable sets in R𝑘. Let 𝑝 ∈ 𝐶(𝐴+) and 𝑞 ∈ 𝐶(𝐴−) be
any two points. Then

‖𝑝 − 𝑞‖ ≥ 𝜏(𝐴+, 𝐴−).

Proof: As in the earlier proof, choose supporting hyperplanes 𝑓+(𝑥) = 𝑤 ⋅ 𝑥 − 𝐵+ = 0 and
𝑓−(𝑥) = 𝑤 ⋅𝑥−𝐵− for 𝐴+ and 𝐴−. By our discussion above, these are also supporting hyperplanes
for 𝐶(𝐴+) and 𝐶(𝐴−). Therefore if 𝑝 ∈ 𝐶(𝐴+) and 𝑞 ∈ 𝐶(𝐴−), we have 𝑤 ⋅ 𝑝 − 𝐵+ ≥ 0 and
𝑤 ⋅ 𝑞 − 𝐵− ≤ 0. As before

𝑤 ⋅ (𝑝 − 𝑞) ≥ 𝐵+ − 𝐵− > 0
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and so
‖𝑝 − 𝑞‖ ≥ 𝐵+ − 𝐵−

‖𝑤‖ = 𝜏𝑤(𝐴+, 𝐴−)

Since this holds for any 𝑤, we have the result for 𝜏(𝐴+, 𝐴−).
The reason this result is useful is that, as we’ve seen, if we restrict 𝑝 and 𝑞 to 𝐴+ and 𝐴−, then
there can be a gap between the minimal distance and the optimal margin. If we allow 𝑝 and 𝑞 to
range over the convex hulls of these sets, then that gap disappears.

One other consequence of this is that if 𝐴+ and 𝐴− are linearly separable then their convex hulls
are disjoint.

Corollary: If 𝐴+ and 𝐴− are linearly separable then ‖𝑝−𝑞‖ > 0 for all 𝑝 ∈ 𝐶(𝐴+) and 𝑞 ∈ 𝐶(𝐴−)
Proof: The sets are linearly separable precisely when 𝜏 > 0.
Our strategy now is to show that if 𝑝 and 𝑞 are points in 𝐶(𝐴+) and 𝐶(𝐴−) respectively that are at
minimal distance 𝐷, and if we set 𝑤 = 𝑝 − 𝑞, then we obtain supporting hyperplanes with margin
equal to ‖𝑝 − 𝑞‖. Since this margin is the largest possible margin, this 𝑤 must be the optimal 𝑤.
This transforms the problem of finding the optimal margin into the problem of finding the closest
points in the convex hulls.

Lemma: Let
𝐷 = min

𝑝∈𝐶(𝐴+),𝑞∈𝐶(𝐴−)
‖𝑝 − 𝑞‖.

Then there are points 𝑝∗ ∈ 𝐶(𝐴+) and 𝑞∗ ∈ 𝐶(𝐴−) with ‖𝑝∗ − 𝑞∗‖ = 𝐷. If 𝑝∗
1, 𝑞∗

1 and 𝑝∗
2, 𝑞∗

2 are two
pairs of points satisfying this condition, then 𝑝∗

1 − 𝑞∗
1 = 𝑝∗

2 − 𝑞∗
2.

Proof: Consider the set of differences

𝑉 = {𝑝 − 𝑞 ∶ 𝑝 ∈ 𝐶(𝐴+), 𝑞 ∈ 𝐶(𝐴−)}.

• 𝑉 is compact. This is because it is the image of the compact set 𝐶(𝐴+) × 𝐶(𝐴−) in R𝑘 × R𝑘

under the continuous map ℎ(𝑥, 𝑦) = 𝑥 − 𝑦.
• the function 𝑑(𝑣) = ‖𝑣‖ is continuous and satisfies 𝑑(𝑣) ≥ 𝐷 > 0 for all 𝑣 ∈ 𝑉 .

Since 𝑑 is a continuous function on a compact set, it attains its minimum 𝐷 and so there is a
𝑣 = 𝑝∗ − 𝑞∗ with 𝑑(𝑣) = 𝐷.

Now suppose that there are two distinct points 𝑣1 = 𝑝∗
1−𝑞∗

1 and 𝑣2 = 𝑝∗
2−𝑞∗

2 with 𝑑(𝑣1) = 𝑑(𝑣2) = 𝐷.
Consider the line segment

𝑡(𝑠) = (1 − 𝑠)𝑣1 + 𝑠𝑣2 where 0 ≤ 𝑠 ≤ 1

joining 𝑣1 and 𝑣2.
Now

𝑡(𝑠) = ((1 − 𝑠)𝑝∗
1 + 𝑠𝑝∗

2) − ((1 − 𝑠)𝑞∗
1 + 𝑠𝑞∗

2).
Both terms in this difference belong to 𝐶(𝐴+) and 𝐶(𝐴−) respectively, regardless of 𝑠, by convexity,
and therefore 𝑡(𝑠) belongs to 𝑉 for all 0 ≤ 𝑠 ≤ 1.
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This little argument shows that 𝑉 is convex. In geometric terms, 𝑣1 and 𝑣2 are two points in the
set 𝑉 equidistant from the origin and the segment joining them is a chord of a circle; as Figure 7.8
shows, in that situation there must be a point on the line segment joining them that’s closer to
the origin than they are. Since all the points on that segment are in 𝑉 by convexity, this would
contradict the assumption that 𝑣1 is the closet point in 𝑉 to the origin.

Figure 7.8: Chord of a circle

In algebraic terms, since 𝐷 is the minimal value of ‖𝑣‖ for all 𝑣 ∈ 𝑉 , we must have 𝑡(𝑠) ≥ 𝐷.
On the other hand

𝑑
𝑑𝑠‖𝑡(𝑠)‖2 = 𝑑

𝑑𝑠(𝑡(𝑠) ⋅ 𝑡(𝑠)) = 𝑡(𝑠) ⋅ 𝑑𝑡(𝑠)
𝑑𝑠 = 𝑡(𝑠) ⋅ (𝑣2 − 𝑣1).

Therefore
𝑑
𝑑𝑠‖𝑡(𝑠)‖2|𝑠=0 = 𝑣1 ⋅ (𝑣2 − 𝑣1) = 𝑣1 ⋅ 𝑣2 − ‖𝑣1‖2 ≤ 0

since 𝑣1 ⋅ 𝑣2 ≤ 𝐷2 and ‖𝑣1‖2 = 𝐷2. If 𝑣1 ⋅ 𝑣2 < 𝐷2, then this derivative would be negative, which
would mean that there is a value of 𝑠 where 𝑡(𝑠) would be less than 𝐷. Since that can’t happen,
we conclude that 𝑣1 ⋅ 𝑣2 = 𝐷2 which means that 𝑣1 = 𝑣2 – the vectors have the same magnitude 𝐷
and are parallel. This establishes uniqueness.

Note: The essential ideas of this argument show that a compact convex set in R𝑘 has a unique
point closest to the origin. The convex set in this instance,

𝑉 = {𝑝 − 𝑞 ∶ 𝑝 ∈ 𝐶(𝐴+), 𝑞 ∈ 𝐶(𝐴−)},

is called the difference 𝐶(𝐴+) − 𝐶(𝐴−), and it is generally true that the difference of convex sets
is convex.

Now we can conclude this line of argument.
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Theorem: Let 𝑝 and 𝑞 be points in 𝐶(𝐴+) and 𝐶(𝐴−) respectively are such that ‖𝑝−𝑞‖ is minimal
among all such pairs. Let 𝑤 = 𝑝−𝑞 and set 𝐵+ = 𝑤⋅𝑝 and 𝐵− = 𝑤⋅𝑞. Then 𝑓+(𝑥) = 𝑤⋅𝑥−𝐵+ = 0
and 𝑓−(𝑥) = 𝑤 ⋅ 𝑥 − 𝐵− are supporting hyperplanes for 𝐶(𝐴+) and 𝐶(𝐴−) respectively and the
associated margin

𝜏𝑤(𝐴+, 𝐴−) = 𝐵+ − 𝐵−

‖𝑤‖ = ‖𝑝 − 𝑞‖

is optimal.

Proof: First we show that 𝑓+(𝑥) = 0 is a supporting hyperplane for 𝐶(𝐴+). Suppose not. Then
there is a point 𝑝′ ∈ 𝐶(𝐴+) such that 𝑓+(𝑥) < 0. Consider the line segment 𝑡(𝑠) = (1 − 𝑠)𝑝 + 𝑠𝑝′

running from 𝑝 to 𝑝′. By convexity it is entirely contained in 𝐶(𝐴+). Now look at the distance
from points on this segment to 𝑞:

𝐷(𝑠) = ‖𝑡(𝑠) − 𝑞‖2.
We have

𝑑𝐷(𝑠)
𝑑𝑠 |𝑠=0 = 2(𝑝 − 𝑞) ⋅ (𝑝′ − 𝑝) = 2𝑤 ⋅ (𝑝′ − 𝑝) = 2 [(𝑓+(𝑝′) + 𝐵+) − (𝑓+(𝑝) + 𝐵+)]

so
𝑑𝐷(𝑠)

𝑑𝑠 |𝑠=0 = 2(𝑓+(𝑝′) − 𝑓+(𝑝)) < 0

since 𝑓(𝑝) = 0. This means that 𝐷(𝑠) is decreasing along 𝑡(𝑠) and so there is a point 𝑠′ along
𝑡(𝑠) where ‖𝑡(𝑠′) − 𝑞‖ < 𝐷. This contradicts the fact that 𝐷 is the minimal distance. The same
argument shows that 𝑓−(𝑥) = 0 is also a supporting hyperplane.

Now the margin for this 𝑤 is

𝜏𝑤(𝐴+, 𝐴−) = 𝑤 ⋅ (𝑝 − 𝑞)
‖𝑤‖ = ‖𝑝 − 𝑞‖ = 𝐷

and as 𝑤 varies we know this is the largest possible 𝜏 that can occur. Thus this is the maximal
margin.

*Figure 7.9 shows how considering the closest point in the convex hulls “fixes” the problem that
we saw in Figure 7.5. The closest point occurs at a point on the boundary of the convex hull that
is not one of the points in 𝐴+ or 𝐴−.

7.5 Finding the Optimal Margin Classifier

Now that we have translated our problem into geometry, we can attempt to develop an algorithm
for solving it. To recap, we have two sets of points

𝐴+ = {𝑥+
1 , … , 𝑥+

𝑛+
}

and
𝐴− = {𝑥−

1 , … , 𝑥−
𝑛−

}
in R𝑘 that are linearly separable.
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Figure 7.9: Closest distance between convex hulls gives optimal margin

We wish to find points 𝑝 ∈ 𝐶(𝐴+) and 𝑞 ∈ 𝐶(𝐴−) such that

‖𝑝 − 𝑞‖ = min
𝑝′∈𝐶(𝐴+),𝑞′∈𝐶(𝐴−)

‖𝑝′ − 𝑞′‖.

Using the definition of the convex hull we can express this more concretely. Since 𝑝 ∈ 𝐶(𝐴+), there
are coefficients 𝜆+

𝑖 ≥ 0 for 𝑖 = 1, … , 𝑛+ and 𝜆−
𝑖 ≥ 0 for 𝑖 = 1, … , 𝑛− so that

𝑝 =
𝑛+

∑
𝑖=1

𝜆+
𝑖 𝑥+

𝑖

𝑞 =
𝑛−

∑
𝑖=1

𝜆−
𝑖 𝑥−

𝑖

where ∑𝑛±
𝑖=1 𝜆±

𝑖 = 1.
We can summarize this as follows:

Optimization Problem 1: Write 𝜆± = (𝜆±
1 , … , 𝜆±

𝑛±
) Define

𝑤(𝜆+, 𝜆−) =
𝑛+

∑
𝑖=1

𝜆+
𝑖 𝑥+

𝑖 −
𝑛−

∑
𝑖=1

𝜆−𝑥−
𝑖

To find the supporting hyperplanes that define the optimal margin between 𝐴+ and 𝐴−, find 𝜆+

and 𝜆− such that ‖𝑤(𝜆+, 𝜆−)‖2 is minimal among all such 𝑤 where all 𝜆±
𝑖 ≥ 0 and ∑𝑛±

𝑖=1 𝜆±
𝑖 = 1.

This is an example of a constrained optimization problem. It’s worth observing that the objective
function ‖𝑤(𝜆+, 𝜆−)‖2 is just a quadratic function in the 𝜆±. Indeed we can expand

‖𝑤(𝜆+, 𝜆−)‖2 = (
𝑛+

∑
𝑖=1

𝜆+
𝑖 𝑥𝑖 −

𝑛−

∑
𝑖=1

𝜆−𝑥−
𝑖 ) ⋅ (

𝑛+

∑
𝑖=1

𝜆+
𝑖 𝑥𝑖 −

𝑛−

∑
𝑖=1

𝜆−𝑥−
𝑖 )

to obtain
‖𝑤(𝜆+, 𝜆−)‖2 = 𝑅 − 2𝑆 + 𝑇
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where

𝑅 =
𝑛+

∑
𝑖=1

𝑛+

∑
𝑗=1

𝜆+
𝑖 𝜆+

𝑗 (𝑥+
𝑖 ⋅ 𝑥+

𝑗 )

𝑆 =
𝑛+

∑
𝑖=1

𝑛−

∑
𝑗=1

𝜆+
𝑖 𝜆−

𝑗 (𝑥+
𝑖 ⋅ 𝑥−

𝑗 )

𝑇 =
𝑛−

∑
𝑖=1

𝑛−

∑
𝑗=1

𝜆−
𝑖 𝜆−

𝑗 (𝑥−
𝑖 ⋅ 𝑥−

𝑗 )

(7.2)

Thus the function we are trying to minimize is relatively simple.

On the other hand, unlike optimization problems we have seen earlier in these lectures, in which we
can apply Lagrange multipliers, in this case some of the constraints are inequalities – namely the
requirement that all of the 𝜆± ≥ 0 – rather than equalities. There is an extensive theory of such
problems that derives from the idea of Lagrange multipliers. However, in these notes, we will not
dive into that theory but will instead construct an algorithm for solving the problem directly.

7.5.1 Relaxing the constraints

Our first step in attacking this problem is to adjust our constraints and our objective function
slightly so that the problem becomes easier to attack.

Optimization Problem 2: This is a slight revision of problem 1 above. We minimize:

𝑄(𝜆+, 𝜆−) = ‖𝑤(𝜆+, 𝜆−)‖2 −
𝑛+

∑
𝑖=1

𝜆+
𝑖 −

𝑛−

∑
𝑖=1

𝜆−
𝑖

subject to the constraints that all 𝜆±
𝑖 ≥ 0 and

𝛼 =
𝑛+

∑
𝑖=1

𝜆+
𝑖 =

𝑛−

∑
𝑖=1

𝜆−
𝑖 .

Problem 2 is like problem 1, except we don’t require the sums of the 𝜆±
𝑖 to be one, but only that

they be equal to each other; and we modify the objective function slightly. It turns out that the
solution to this optimization problem easily yields the solution to our original one.

Lemma: Suppose 𝜆+ and 𝜆− satisfy the constraints of problem 2 and yield the minimal value
for the objective function 𝑄(𝜆+, 𝜆−). Then 𝛼 ≠ 0. Rescale the 𝜆± to have sum equal to one by
dividing by 𝛼, yielding 𝜏± = (1/𝛼)𝜆±. Then 𝑤(𝜏+, 𝜏−) is a solution to optimization problem 1.

Proof: To show that 𝛼 ≠ 0, suppose that 𝜆±
𝑖 = 0 for all 𝑖 ≠ 1 and 𝜆 = 𝜆+

1 = 𝜆−
1 . The one-variable

quadratic function 𝑄(𝜆) takes its minimum value at 𝜆 = 1/‖𝑥+
1 − 𝑥−

1 ‖2 and its value at that point
is negative. Therefore the minimum value of 𝑄 is negative, which means 𝛼 ≠ 0 at that minimum
point.

For the equivalence, notice that 𝜏± still satisfy the constraints of problem 2. Therefore

𝑄(𝜆+, 𝜆−) = ‖𝑤(𝜆+, 𝜆−)‖2 − 2𝛼 ≤ ‖𝑤(𝜏+, 𝜏−)‖2 − 2.
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On the other hand, suppose that 𝜎± are a solution to problem 1. Then

‖𝑤(𝜎+, 𝜎−)‖2 ≤ ‖𝑤(𝜏+, 𝜏−)‖2.

Therefore
𝛼2‖𝑤(𝜎+, 𝜎−)‖2 = ‖𝑤(𝛼𝜎+, 𝛼𝜎−)‖2 ≤ ‖𝑤(𝜆+, 𝜆−)‖2

and finally
‖𝑤(𝛼𝜎+, 𝛼𝜎−)‖2 − 2𝛼 ≤ 𝑄(𝜆+, 𝜆−) = ‖𝑤(𝛼𝜏+, 𝛼𝜏−)‖2 − 2𝛼.

Since 𝑄 is the minimal value, we have

𝛼2‖𝑤(𝜎+, 𝜎−)‖2 = 𝛼2‖𝑤(𝜏+, 𝜏−)‖2

so that indeed 𝑤(𝜏+, 𝜏−) gives a solution to Problem 1.

7.5.2 Sequential Minimal Optimization

Now we outline an algorithm for solving Problem 2 that is called Sequential Minimal Optimization
that was introduced by John Platt in 1998 (See [10] and Chapter 12 of [11]). The algorithm is
based on the principle of “gradient ascent”, where we exploit the fact that the negative gradient of
a function points in the direction of its most rapid decrease and we take small steps in the direction
of the negative gradient until we reach the minimum.

However, in this case simplify this idea a little. Recall that the objective function 𝑄(𝜆+, 𝜆−) is a
quadratic function in the 𝜆’s and that we need to preserve the condition that ∑ 𝜆+

𝑖 = ∑ 𝜆−
𝑖 . So

our approach is going to be to take, one at a time, a pair 𝜆+
𝑖 and 𝜆−

𝑗 and change them together
so that the equality of the sums is preserved and the change reduces the value of the objective
function. Iterating this will take us to a minimum.

So, for example, let’s look at 𝜆+
𝑖 and 𝜆−

𝑗 and, for the moment, think of all of the other 𝜆’s as
constants. Then our objective function reduces to a quadratic function of these two variables that
looks something like:

𝑄(𝜆+
𝑖 , 𝜆−

𝑗 ) = 𝑎(𝜆+
𝑖 )2 + 𝑏𝜆+

𝑖 𝜆−
𝑗 + 𝑐(𝜆−

𝑖 )2 + 𝑑𝜆+
𝑖 + 𝑒𝜆−

𝑗 + 𝑓.

The constraints that remain are 𝜆± ≥ 0, and we are going to try to minimize 𝑄 by changing 𝜆+
𝑖

and 𝜆−
𝑗 by the same amount 𝛿. Furthermore, since we still must have 𝜆+

𝑖 + 𝛿 ≥ 0 and 𝜆−
𝑗 + 𝛿 ≥ 0,

we have

𝛿 ≥ 𝑀 = max{−𝜆+
𝑖 , −𝜆−

𝑗 } (7.3)

In terms of this single variable 𝛿, our optimization problem becomes the job of finding the minimum
of a quadratic polynomial in one variable subject to the constraint in Equation 7.3. This is easy!
There are two cases: the critical point of the quadratic is to the left of 𝑀 , in which case the
minimum value occurs at 𝑀 ; or the critical point of the quadratic is to the right of 𝑀 , in which
case the critical point occurs there. This is illustrated in Figure 7.10.
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Figure 7.10: Minimizing the 1-variable quadratic objective function

Computationally, let’s write

𝑤𝛿,𝑖,𝑗(𝜆+, 𝜆−) = 𝑤(𝜆+, 𝜆−) + 𝛿(𝑥+
𝑖 − 𝑥−

𝑗 ).

Then
𝑑
𝑑𝛿 (‖𝑤𝛿,𝑖,𝑗(𝜆+, 𝜆−)‖2 − 2𝛼) = 2𝑤𝛿,𝑖,𝑗(𝜆+, 𝜆−) ⋅ (𝑥+

𝑖 − 𝑥−
𝑗 ) − 2

and using the definition of 𝑤𝛿,𝑖,𝑗 we obtain the following formula for the critical value of 𝛿 by setting
this derivative to zero:

𝛿𝑖,𝑗 = (1 − 𝑤(𝜆+, 𝜆−) ⋅ (𝑥+
𝑖 − 𝑥−

𝑗 )
‖𝑥+

𝑖 − 𝑥−
𝑗 ‖2

Using this information we can describe the SMO algorithm.

Algorithm (SMO, see [10]):

Given: Two linearly separable sets of points 𝐴+ = {𝑥+
1 , … , 𝑥+

𝑛+
} and 𝐴− = {𝑥−

1 , … , 𝑥−
𝑛−

} in R𝑘.

Find: Points 𝑝 and 𝑞 belonging to 𝐶(𝐴+) and 𝐶(𝐴−) respectively such that

‖𝑝 − 𝑞‖2 = min
𝑝′∈𝐶(𝐴+),𝑞′∈𝐶(𝐴−)

‖𝑝′ − 𝑞′‖2

Initialization: Set 𝜆+
𝑖 = 1

𝑛+
for 𝑖 = 1, … , 𝑛+ and 𝜆−

𝑖 = 1
𝑛−

for 𝑖 = 1, … , 𝑛−. Set

𝑝(𝜆+) =
𝑛+

∑
𝑖=1

𝜆+
𝑖 𝑥+

𝑖

and

𝑞(𝜆−) =
𝑛−

∑
𝑖=1

𝜆−
𝑖 𝑥−

𝑖

Notice that 𝑤(𝜆+, 𝜆−) = 𝑝(𝜆+) − 𝑞(𝜆−). Let 𝛼 = ∑𝑛+
𝑖=1 𝜆+ = ∑𝑛−

𝑖=1 𝜆−. These sums will remain
equal to each other throughout the operation of the algorithm.

Repeat the following steps until maximum value of 𝛿∗ computed in each iteration is smaller than
some tolerance (so that the change in all of the 𝜆’s is very small):
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• For each pair 𝑖, 𝑗 with 1 ≤ 𝑖 ≤ 𝑛+ and 1 ≤ 𝑗 ≤ 𝑛−, compute

𝑀𝑖,𝑗 = max{−𝜆+
𝑖 , −𝜆−

𝑗 }

and

𝛿𝑖,𝑗 = 1 − (𝑝(𝜆+) − 𝑞(𝜆−)) ⋅ (𝑥+
𝑖 − 𝑥−

𝑗 )
‖𝑥+

𝑖 − 𝑥−
𝑗 ‖2 .

If 𝛿𝑖,𝑗 ≥ 𝑀 then set 𝛿∗ = 𝛿𝑖,𝑗; otherwise set 𝛿∗ = 𝑀 . Then update the 𝜆± by the equations:

𝜆+
𝑖 = 𝜆+

𝑖 + 𝛿∗
𝑖,𝑗

𝜆+
𝑗 = 𝜆−

𝑗 + 𝛿∗
𝑖,𝑗

When this algorithm finishes, 𝑝 ≈ 𝑝(𝜆+) and 𝑞 ≈ 𝑞(𝜆−) will be very good approximations to the
desired closest points.

Recall that if we set 𝑤 = 𝑝 − 𝑞, then the optimal margin classifier is

𝑓(𝑥) = 𝑤 ⋅ 𝑥 − 𝐵+ + 𝐵−

2 = 0

where 𝐵+ = 𝑤 ⋅ 𝑝 and 𝐵− = 𝑤 ⋅ 𝑞. Since 𝑤 = 𝑝 − 𝑞 we can simplify this to obtain

𝑓(𝑥) = (𝑝 − 𝑞) ⋅ 𝑥 − ‖𝑝‖2 − ‖𝑞‖2

2 = 0.

In Figure 7.11, we show the result of applying this algorithm to the penguin data and illustrate
the closest points as found by an implementation of the SMO algorithm, together with the optimal
classifying line.

Bearing in mind that the y-axis is scaled by a factor of 200, we obtain the following rule for
distinguishing between Adelie and Gentoo penguins – if the culmen depth and body mass put you
above the red line, you are a Gentoo penguin, otherwise you are an Adelie.

7.6 Inseparable Sets

Not surprisingly, real life is often more complicated than the penguin example we’ve discussed at
length in these notes. In particular, sometimes we have to work with sets that are not linearly
separable. Instead, we might have two point clouds, the bulk of which are separable, but because of
some outliers there is no hyperplane we can draw that separates the two sets into two halfplanes.

Fortunately, all is not lost. There are two common ways to address this problem, and while we
won’t take the time to develop the theory behind them, we can at least outline how they work.
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Figure 7.11: Closest points in convex hulls of penguin data

7.6.1 Best Separating Hyperplanes

If our sets are not linearly separable, then their convex hulls overlap and so our technique for
finding the closest points of the convex hulls won’t work. In this case, we can “shrink” the convex
hull by considering combinations of points ∑𝑖 𝜆𝑖𝑥𝑖 where ∑ 𝜆𝑖 = 1 and 𝐶 ≥ 𝜆𝑖 ≥ 0 for some 𝐶 ≤ 1.
For 𝐶 small enough, reduced convex hulls will be linearly separable – although some outlier points
from each class will lie outside of them – and we can find hyperplane that separates the reduced
hulls.
In practice, this means we allow a few points to lie on the “wrong side” of the hyperplane. Our
tolerance for these mistakes depends on 𝐶, but we can include 𝐶 in the optimization problem to
try to find the smallest 𝐶 that “works”.

7.6.2 Nonlinear kernels

The second option is to look not for separating hyperplanes but instead for separating curves –
perhaps polynomials or even more exotic curves. This can be achieved by taking advantage of the
form of Equation 7.2. As you see there, the only way the points 𝑥±

𝑖 enter in to the function being
minimized is through the inner products 𝑥±

𝑖 ⋅ 𝑥±
𝑗 . We can adopt a different inner product than the

usual Euclidean one, and reconsider the problem using this different inner product. This amounts
to embedding our points in a higher dimensional space where they are more likely to be linearly
separable. Again, we will not pursue the mathematics of this further in these notes.
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7.7 Exercises

7.7 Exercises

1. Prove that, if 𝑓(𝑥) = 𝑤 ⋅ 𝑥 + 𝑏 = 0 is a hyperplane in R𝑘, then the two “sides” of this
hyperplane, consisting of the points where 𝑓(𝑥) ≥ 0 and 𝑓(𝑥) ≤ 0, are both convex sets.

2. Prove that 𝐶(𝑆) is the intersection of all the halfplanes 𝑓(𝑥) ≥ 0 as 𝑓(𝑥) = 𝑤 ⋅ 𝑥 + 𝑏 runs
through all supporting hyperplanes for 𝑆 where 𝑓(𝑥) ≥ 0 for all 𝑝 ∈ 𝑆.

3. Prove that 𝐶(𝑆) is bounded. Hint: show that 𝑆 is contained in a sphere of sufficiently large
radius centered at zero, and then that 𝐶(𝑆) is contained in that sphere as well.

4. Confirm the final formula for the optimal margin classifier at the end of the lecture.
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