Vector Spaces and Subspaces

Jeremy Teitelbaum

Vector Spaces

Part of the power of linear algebra comes from the observation that many problems can be recast in terms of vectors from \mathbf{R}^n .

This process of abstraction is based on the idea of a vector space.

Definition: A (real) vector space is a set V (whose elements are called *vectors*) with two operations:

- Addition, which works on pairs of vectors, converting two vectors into a third: $(v, w) \mapsto v + w$
- scalar multiplication, which works on a real number a and a vector v, yielding a vector av.

Vector Space Axioms

The operations must satisfy the following properties:

- Addition is commutative u + v = v + u and associative (u + v) + w = u + (v + w).
- Scalar multiplication is distributive so a(u + v) = au + av and (a + b)u = au + bu.
- Scalar multiplication satisfies a(bv) = (ab)v and 1v = v.
- There is a zero vector $0 \in V$ satisfying 0 + v = v for all v, and every vector v has an inverse -v so that v + (-v) = 0.

Clearly the "usual" vectors \mathbf{R}^n satisfy all these conditions.

Other examples of vector spaces

- 1. The polynomials of degree at most n.
- 2. The solutions to the differential equation x'' + x = 0.
- 3. The possible prices for a stock on the first of each month from January 2019 through December 2023. (Here each stock gives a vector of 60 prices).

Subspaces

A subspace of a vector space is a subset that is also a vector space. If W is a subset of V that contains 0 and has the closure properties:

▶ If
$$w, w' \in W$$
 then $w + w' \in W$
▶ If $w \in W$ then $aw \in W$

then W is a subspace.

- The vectors in Rⁿ whose last entry is zero is a subspace.
- It's silly but the set consisting of just 0 is a subspace of any vector space.
- ▶ The polynomials of degree at most 3 are a subspace of the polynomials of degree at most 10.

If v_1,\ldots,v_k are vectors in $\mathbf{R}^n,$ then the span of the set of v_i is a subspace.

This is called the subspace spanned by the v_i .

- ▶ The span of (1,0,0) and (0,1,0) in **R**³ is the subspace of vectors whose last entry is zero.
- The span of (1, 1, 0) and (1, -1, 0) is the same.
- The span of (2,3,1) and (-1,-1,0) is a plane in \mathbf{R}^3 that is a vector space in its own right.

Subspaces related to matrices

Let A be an $m \times n$ matrix. So $x \mapsto Ax$ is a linear map from $\mathbf{R}^n \to \mathbf{R}^m$.

The set of vectors v such that Av = 0 is called *the null space of* A written Nul(A). The null space is a subspace of \mathbb{R}^n .

This follows because:

$$\begin{array}{l} \bullet \quad A(0) = 0 \\ \bullet \quad A(u+v) = Au + Av = 0 \text{ if so } u+v \in \mathrm{Nul}(A) \text{ if } u \text{ and } v \text{ are.} \\ \bullet \quad A(av) = aAv = 0 \text{ so } av \in \mathrm{Nul}(A) \text{ if } v \text{ is.} \end{array}$$

Put another way, the solution to a system of *homogeneous* equations is a subspace.

Finding the null space

To find the Null space of A, use row reduction to put A in row reduced echelon form. Then write the basic variables in terms of the free variables, and give the general solution as a linear combination of vectors where the weights are the free variables.

Let

$$A = \begin{bmatrix} -2 & -2 & 0 & 1 & 2\\ 1 & -2 & 2 & -1 & -2\\ 2 & -2 & -3 & 2 & -3 \end{bmatrix}$$

Apply row reduction yielding:

$$\begin{bmatrix} 1 & 0 & 0 & -\frac{4}{17} & -\frac{22}{17} \\ 0 & 1 & 0 & -\frac{9}{34} & \frac{5}{17} \\ 0 & 0 & 1 & -\frac{11}{17} & -\frac{1}{17} \end{bmatrix}$$

Null Space computation

This gives

$$\begin{array}{rcl} x_1 & = & \frac{4}{17}x_4 + \frac{22}{17}x_5 \\ x_2 & = & \frac{9}{34}x_4 - \frac{5}{17}x_5 \\ x_3 & = & \frac{11}{17}x_4 + \frac{1}{17}x_5 \end{array}$$

Parametrically

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = x_4 \begin{bmatrix} \frac{4}{17} \\ \frac{9}{34} \\ \frac{11}{17} \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} \frac{22}{17} \\ -\frac{5}{17} \\ \frac{1}{17} \\ 0 \\ 1 \end{bmatrix}$$

Conclusion

Notice that the two vectors *span the null space* and that they are *linearly independent* (look at the last two cooordinates).

Two observations:

- this algorithm will always produce a linearly independent spanning set for the null space
- The number of vectors in this spanning set corresponds to the number of free variables in Ax = 0.

Column Space

The column space of an $m \times n$ matrix A is the span of the column vectors; that is, the set of all linear combinations of the columns.

$$\operatorname{Col}(A) = \{Ax : x \in \mathbf{R}^n\}$$

The column space is a subspace because:

0 is a linear combination of the columns (all zero coefficients)
if y = Ax₁ and z = Ax₂ then y + z = A(x₁ + x₂)
if y = Ax₁ then ay = A(ax₁).

The column space of A is all of \mathbf{R}^m means that the map T(x) = Ax is onto and that Ax = b has a solution for any b.

The columns of A are "obvious" members of Col(A).

Given another vector $b \in \mathbb{R}^m$, to tell if b is in $\operatorname{Col}(A)$ requires finding an x so that Ax = b.

The Row Space

The row space is the span of the rows of a matrix.