1.8-1.9 Matrices and Linear Transformations

Jeremy Teitelbaum

Linear Transformations and Matrices

If A is an $n \times m$ matrix, and x is any vector in \mathbf{R}^m , then Ax is a vector in \mathbf{R}^n .

So we can define a function $T: \mathbf{R}^m \to \mathbf{R}^n$ by

$$T(x) = Ax.$$

For example if

$$A = \begin{bmatrix} 0 & -4\\ 4 & 1\\ 3 & 3 \end{bmatrix} \text{ and } v = \begin{bmatrix} x\\ y \end{bmatrix}$$

then

$$T(v) = Av = \begin{bmatrix} -4y\\ 4x + y\\ 3x + 3y \end{bmatrix}$$

Function terminology

In general if $f: X \to Y$ is a function then f is a "rule" that associates exactly one element $y \in Y$ to each element $x \in X$. The y corresponding to x is called f(x). Furthermore:

- X is called the domain of f
- Y is called the codomain of f
- the set of $y \in Y$ so that there is an $x \in X$ with f(x) = y is called the *range* of f.
- if f(x) = y, then y is called the *image* of x under f.

If A is an $n\times m$ matrix, then the domain of f(x)=Ax is ${\bf R}^m$ and the codomain is ${\bf R}^n.$

Examples of matrix transformations

 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

then

lf

$$A\begin{bmatrix} x\\ y\\ z\end{bmatrix} = \begin{bmatrix} x\\ y\\ 0\end{bmatrix}$$

is called a *projection*, in this case onto the xy-plane.

Rotations in 2d

lf

$$A(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

then

$$A(\theta) \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \cos \theta - y \sin \theta \\ x \sin \theta + y \cos \theta \end{bmatrix}$$

rotates the vector (x,y) through an angle θ counterclockwise. To see this, write $x = r \cos \phi$ and $y = r \sin \phi$. Then:

$$r\cos\phi\cos\theta - r\sin\phi\sin\theta = r\cos(\phi+\theta) r\cos\phi\sin\theta + r\sin\phi\cos\theta = r\sin(\phi+\theta)$$

Linear Transformations

Let $T: \mathbf{R}^m \to \mathbf{R}^n$ be a function. Then T is called a linear transformation if

▶
$$T(ax) = aT(x)$$
 for every scalar a , and
▶ $T(x+y) = T(x) + T(y)$ for any two vectors $x, y \in \mathbf{R}^m$.

Any matrix transformation T(x) = Ax, where A is $n \times m$, is linear.

If T is linear, then T(0) = 0 (because T(0x) = 0T(x) = 0.)

Linear Transformations

Let

$$T(x) = \begin{bmatrix} 1 & 0 & -2 \\ -2 & 1 & 6 \\ 3 & -2 & -5 \end{bmatrix} x.$$

Find a vector x so that T(x) = b and determine if this x is unique.

Hint: The rref form for the augmented matrix $\begin{bmatrix} A & b \end{bmatrix}$ is

$$\begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

Another problem

Let

$$T(x) = \begin{bmatrix} 1 & -2 & 1 \\ 3 & -4 & 5 \\ 0 & 1 & 1 \\ -3 & 5 & -4 \end{bmatrix} x.$$

Find a vector x so that T(x)=b and determine if this x is unique. Hint: The rref form for the augmented matrix $\begin{bmatrix} A & b \end{bmatrix}$ is

$$\begin{bmatrix} 1 & 0 & 3 & 7 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Linear Transformations

If $T:\mathbf{R}^m\to\mathbf{R}^n\$$ is linear, and v_1,\ldots,v_k are vectors in $\mathbf{R}^m,$ then if you know

 $T(v_1),\ldots,T(v_k)$

you know

$$T(a_1v_1+\dots+a_kv_k)$$

for any constants $a_i.$ In other words, you can compute T for any vector in the span of $v_1,\ldots,v_k.$

Linear Transformations

In particular if

 $T(\begin{bmatrix}1\\0\end{bmatrix}) = \begin{bmatrix}a\\b\end{bmatrix}$

and

$$T(\begin{bmatrix} 0\\1 \end{bmatrix}) = \begin{bmatrix} c\\d \end{bmatrix}$$

then

$$T(\begin{bmatrix} x \\ y \end{bmatrix}) = T(x\begin{bmatrix} 1 \\ 0 \end{bmatrix} + y\begin{bmatrix} 0 \\ 1 \end{bmatrix}) = xT(\begin{bmatrix} 1 \\ 0 \end{bmatrix}) + yT(\begin{bmatrix} 0 \\ 1 \end{bmatrix}) = \begin{bmatrix} ax + cy \\ bx + dy \end{bmatrix}$$

and ${\boldsymbol{T}}({\boldsymbol{x}}) = A{\boldsymbol{x}}$ where

$$A = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$$

Matrices and Linear Transformations

We have seen that, given a matrix A, then $T(\boldsymbol{x})=A\boldsymbol{x}$ is a linear transformation.

Now suppose $T : \mathbf{R}^m \to \mathbf{R}^n$ is a linear transformation.

Let $e_i \in \mathbf{R}^m$ be the vector

$$e_i = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}$$

where the 1 is in row i of e_i .

Matrices and Linear Transformations

Let

$$A(T) = \begin{bmatrix} T(e_1) & T(e_2) \cdots T(e_m)) \end{bmatrix}$$

whose columns are the $T(e_i).$ This is an $n\times m$ matrix because each $T(e_i)\in {\bf R}^n.$

Notice that $Ae_i = T(e_i)$ for i = 1, ..., m. As a result, by linearlity, Av = T(v) for any vector $v \in \mathbf{R}^m$.

Therefore every linear transformation comes from multiplication by a matrix.

The identity map

The map $T: \mathbf{R}^m \to \mathbf{R}^m$ given by Tx = x is called the identity map.

Since $T(e_i)=e_i$ for $i=1,\ldots,m$ the matrix of T is the $m\times m$ matrix with 1's on the diagonal and zeros elsewhere.

$$\begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & \ddots & 1 & 0 \\ 0 & 0 & \cdots & 0 & 1 \end{bmatrix}$$

If $T: \mathbf{R}^m \to \mathbf{R}^n$ is linear, then T is determined by what it does to the standard basis vectors e_i .

For example, if m = n = 2, and T is the reflection map T(x,y) = (y,x), then $T(e_1) = e_2$ and $T(e_2) = e_1$ and therefore Tx = Ax where

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

Reflections

Figure 1: reflections

Shears

Image of the Unit Square Standard Matrix Transformation $\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$ Horizontal shear x_2 Xa $\begin{bmatrix} k \\ 1 \end{bmatrix}$ $\begin{bmatrix} k \\ 1 \end{bmatrix}$ $+ x_1$ ► X 1 $\begin{bmatrix} 1\\ 0 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ k < 0k > 0Vertical shear X_{α} $\begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$ $\begin{bmatrix} 0\\1 \end{bmatrix}$ $\begin{bmatrix} 0\\1 \end{bmatrix}$ х, k k < 0k > 0

TABLE 3 Shears

Figure 2: shears

Contractions/Expansions

TABLE 2 Contractions and Expansions

Figure 3: contractions and expansions

Projections

TABLE 4 Projections

Figure 4: projections

One-to-one and onto maps

A function $T: A \to B$ is *one-to-one* if the only way that T(x) = T(y) is if x = y.

Eg the function $f(x) = x^2$ is *not* one-to-one, because f(-1) = f(1) even though $-1 \neq 1$. But the function f(x) = 3x is one-to-one, because if 3x = 3y then x and y must be equal.

A function $T: A \to B$ is *onto* if, for any $b \in B$, there is an $a \in A$ so that T(a) = b.

The function $f(x) = x^2$ is not *onto*, because the equation $-1 = x^2$ does not have a solution (at least in real numbers.) The function f(x) = 3x is *onto*, because the equation y = 3x always has a solution (x = y/3).

One-to-one linear maps

If T is linear, then T(x) = T(y) if and only if T(x) - T(y) = T(x - y) = 0. So T is one-to-one if the only solution to T(v) = 0 is v = 0.

Since T comes from a matrix A, the map is one-to-one if and only if the matrix equation Ax = 0 has only zero as its solution.

This happens if and only if the columns of A are linearly independent.

If $T: \mathbf{R}^m \to \mathbf{R}^n$ is linear, then T(x) is onto if only if T(x) = b has a solution for any $b \in \mathbf{R}^n$. This means that the matrix equation

$$Ax = b$$

has a solution for any $b \in \mathbf{R}^n$.

Since Ax is a linear combination of the columns of A, every equation Ax = b has a solution only if every b is a linear combination of the columns of A. In other words, A is onto if and only if the columns of A span \mathbb{R}^n .

Theorem 12 in the book summarizes these two key facts.

Theorem: Let T(x) = Ax be a linear map from \mathbb{R}^m to \mathbb{R}^n , where A is an $n \times m$ matrix.

- 1. T is one-to-one if and only if the columns of A are linearly independent vectors in \mathbf{R}^n .
- 2. T is onto if and only if the columns of A span \mathbb{R}^n .

Algebraically:

1. T(x) = Ax is one-to-one if and only if the rref of A has no free variables - in other words, if every column has a pivot.

2. T(x) = Ax is onto if and only if every row of A has a pivot.

Note that if A is an $n \times m$ matrix, then:

if m > n, the map cannot be one-to-one.
if n > m, the map cannot be onto.