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Linear Transformations and Matrices
If 𝐴 is an 𝑛 × 𝑚 matrix, and 𝑥 is any vector in R𝑚, then 𝐴𝑥 is a
vector in R𝑛.

So we can define a function 𝑇 ∶ R𝑚 → R𝑛 by

𝑇 (𝑥) = 𝐴𝑥.

For example if

𝐴 = ⎡⎢
⎣

0 −4
4 1
3 3

⎤⎥
⎦

and 𝑣 = [𝑥
𝑦]

then

𝑇 (𝑣) = 𝐴𝑣 = ⎡⎢
⎣

−4𝑦
4𝑥 + 𝑦
3𝑥 + 3𝑦

⎤⎥
⎦



Function terminology

In general if 𝑓 ∶ 𝑋 → 𝑌 is a function then 𝑓 is a “rule” that
associates exactly one element 𝑦 ∈ 𝑌 to each element 𝑥 ∈ 𝑋. The
𝑦 corresponding to 𝑥 is called 𝑓(𝑥). Furthermore:

▶ 𝑋 is called the domain of 𝑓
▶ 𝑌 is called the codomain of 𝑓
▶ the set of 𝑦 ∈ 𝑌 so that there is an 𝑥 ∈ 𝑋 with 𝑓(𝑥) = 𝑦 is

called the range of 𝑓 .
▶ if 𝑓(𝑥) = 𝑦, then 𝑦 is called the image of 𝑥 under 𝑓 .

If 𝐴 is an 𝑛 × 𝑚 matrix, then the domain of 𝑓(𝑥) = 𝐴𝑥 is R𝑚

and the codomain is R𝑛.



Examples of matrix transformations

If

𝐴 = ⎡⎢
⎣

1 0 0
0 1 0
0 0 0

⎤⎥
⎦

then

𝐴 ⎡⎢
⎣

𝑥
𝑦
𝑧
⎤⎥
⎦

= ⎡⎢
⎣

𝑥
𝑦
0
⎤⎥
⎦

is called a projection, in this case onto the 𝑥𝑦-plane.



Rotations in 2d

If
𝐴(𝜃) = [cos 𝜃 − sin 𝜃

sin 𝜃 cos 𝜃 ]

then
𝐴(𝜃) [𝑥

𝑦] = [𝑥 cos 𝜃 − 𝑦 sin 𝜃
𝑥 sin 𝜃 + 𝑦 cos 𝜃]

rotates the vector (𝑥, 𝑦) through an angle 𝜃 counterclockwise.

To see this, write 𝑥 = 𝑟 cos 𝜙 and 𝑦 = 𝑟 sin 𝜙. Then:

𝑟 cos 𝜙 cos 𝜃 − 𝑟 sin 𝜙 sin 𝜃 = 𝑟 cos(𝜙 + 𝜃)
𝑟 cos 𝜙 sin 𝜃 + 𝑟 sin 𝜙 cos 𝜃 = 𝑟 sin(𝜙 + 𝜃)



Linear Transformations

Let 𝑇 ∶ R𝑚 → R𝑛 be a function. Then 𝑇 is called a linear
transformation if

▶ 𝑇 (𝑎𝑥) = 𝑎𝑇 (𝑥) for every scalar 𝑎, and
▶ 𝑇 (𝑥 + 𝑦) = 𝑇 (𝑥) + 𝑇 (𝑦) for any two vectors 𝑥, 𝑦 ∈ R𝑚.

Any matrix transformation 𝑇 (𝑥) = 𝐴𝑥, where 𝐴 is 𝑛 × 𝑚, is linear.

If 𝑇 is linear, then 𝑇 (0) = 0 (because 𝑇 (0𝑥) = 0𝑇 (𝑥) = 0.)



Linear Transformations

Let

𝑇 (𝑥) = ⎡⎢
⎣

1 0 −2
−2 1 6
3 −2 −5

⎤⎥
⎦

𝑥.

Find a vector 𝑥 so that 𝑇 (𝑥) = 𝑏 and determine if this 𝑥 is unique.

Hint: The rref form for the augmented matrix [𝐴 𝑏] is

⎡⎢
⎣

1 0 0 3
0 1 0 1
0 0 1 2

⎤⎥
⎦



Another problem

Let

𝑇 (𝑥) =
⎡
⎢⎢
⎣

1 −2 1
3 −4 5
0 1 1

−3 5 −4

⎤
⎥⎥
⎦

𝑥.

Find a vector 𝑥 so that 𝑇 (𝑥) = 𝑏 and determine if this 𝑥 is unique.

Hint: The rref form for the augmented matrix [𝐴 𝑏] is

⎡
⎢⎢
⎣

1 0 3 7
0 1 1 3
0 0 0 0
0 0 0 0

⎤
⎥⎥
⎦



Linear Transformations

If 𝑇 ∶ R𝑚 → R𝑛$ is linear, and 𝑣1, … , 𝑣𝑘 are vectors in R𝑚, then
if you know

𝑇 (𝑣1), … , 𝑇 (𝑣𝑘)
you know

𝑇 (𝑎1𝑣1 + ⋯ + 𝑎𝑘𝑣𝑘)
for any constants 𝑎𝑖. In other words, you can compute 𝑇 for any
vector in the span of 𝑣1, … , 𝑣𝑘.



Linear Transformations

In particular if
𝑇 ([1

0]) = [𝑎
𝑏]

and
𝑇 ([0

1]) = [𝑐
𝑑]

then

𝑇 ([𝑥
𝑦]) = 𝑇 (𝑥 [1

0] + 𝑦 [0
1]) = 𝑥𝑇 ([1

0]) + 𝑦𝑇 ([0
1]) = [𝑎𝑥 + 𝑐𝑦

𝑏𝑥 + 𝑑𝑦]

and 𝑇 (𝑥) = 𝐴𝑥 where

𝐴 = [𝑎 𝑐
𝑏 𝑑]



Matrices and Linear Transformations

We have seen that, given a matrix 𝐴, then 𝑇 (𝑥) = 𝐴𝑥 is a linear
transformation.

Now suppose 𝑇 ∶ R𝑚 → R𝑛 is a linear transformation.

Let 𝑒𝑖 ∈ R𝑚 be the vector

𝑒𝑖 =
⎡
⎢
⎢
⎢
⎣

0
⋮
1
⋮
0

⎤
⎥
⎥
⎥
⎦

where the 1 is in row 𝑖 of 𝑒𝑖.



Matrices and Linear Transformations

Let
𝐴(𝑇 ) = [𝑇 (𝑒1) 𝑇 (𝑒2) ⋯ 𝑇 (𝑒𝑚))]

whose columns are the 𝑇 (𝑒𝑖). This is an 𝑛 × 𝑚 matrix because
each 𝑇 (𝑒𝑖) ∈ R𝑛.

Notice that 𝐴𝑒𝑖 = 𝑇 (𝑒𝑖) for 𝑖 = 1, … , 𝑚. As a result, by linearlity,
𝐴𝑣 = 𝑇 (𝑣) for any vector 𝑣 ∈ R𝑚.

Therefore every linear transformation comes from multiplication by
a matrix.



The identity map

The map 𝑇 ∶ R𝑚 → R𝑚 given by 𝑇 𝑥 = 𝑥 is called the identity
map.

Since 𝑇 (𝑒𝑖) = 𝑒𝑖 for 𝑖 = 1, … , 𝑚 the matrix of 𝑇 is the 𝑚 × 𝑚
matrix with 1’s on the diagonal and zeros elsewhere.

⎡
⎢⎢
⎣

1 0 0 ⋯ 0
0 1 0 ⋯ 0
0 0 ⋱ 1 0
0 0 ⋯ 0 1

⎤
⎥⎥
⎦



Matrices and Linear Transformations

If 𝑇 ∶ R𝑚 → R𝑛 is linear, then 𝑇 is determined by what it does to
the standard basis vectors 𝑒𝑖.

For example, if 𝑚 = 𝑛 = 2, and 𝑇 is the reflection map
𝑇 (𝑥, 𝑦) = (𝑦, 𝑥), then 𝑇 (𝑒1) = 𝑒2 and 𝑇 (𝑒2) = 𝑒1 and therefore
𝑇 𝑥 = 𝐴𝑥 where

𝐴 = [0 1
1 0] .



Reflections

Figure 1: reflections



Shears

Figure 2: shears



Contractions/Expansions

Figure 3: contractions and expansions



Projections

Figure 4: projections



One-to-one and onto maps

A function 𝑇 ∶ 𝐴 → 𝐵 is one-to-one if the only way that
𝑇 (𝑥) = 𝑇 (𝑦) is if 𝑥 = 𝑦.

Eg the function 𝑓(𝑥) = 𝑥2 is not one-to-one, because
𝑓(−1) = 𝑓(1) even though −1 ≠ 1. But the function 𝑓(𝑥) = 3𝑥
is one-to-one, because if 3𝑥 = 3𝑦 then 𝑥 and 𝑦 must be equal.

A function 𝑇 ∶ 𝐴 → 𝐵 is onto if, for any 𝑏 ∈ 𝐵, there is an 𝑎 ∈ 𝐴
so that 𝑇 (𝑎) = 𝑏.

The function 𝑓(𝑥) = 𝑥2 is not onto, because the equation
−1 = 𝑥2 does not have a solution (at least in real numbers.) The
function 𝑓(𝑥) = 3𝑥 is onto, because the equation 𝑦 = 3𝑥 always
has a solution (𝑥 = 𝑦/3).



One-to-one linear maps

If 𝑇 is linear, then 𝑇 (𝑥) = 𝑇 (𝑦) if and only if
𝑇 (𝑥) − 𝑇 (𝑦) = 𝑇 (𝑥 − 𝑦) = 0. So 𝑇 is one-to-one if the only
solution to 𝑇 (𝑣) = 0 is 𝑣 = 0.

Since 𝑇 comes from a matrix 𝐴, the map is one-to-one if and only
if the matrix equation 𝐴𝑥 = 0 has only zero as its solution.

This happens if and only if the columns of 𝐴 are linearly
independent.



Onto linear maps

If 𝑇 ∶ R𝑚 → R𝑛 is linear, then 𝑇 (𝑥) is onto if only if 𝑇 (𝑥) = 𝑏
has a solution for any 𝑏 ∈ R𝑛. This means that the matrix
equation

𝐴𝑥 = 𝑏
has a solution for any 𝑏 ∈ R𝑛.

Since 𝐴𝑥 is a linear combination of the columns of 𝐴, every
equation 𝐴𝑥 = 𝑏 has a solution only if every 𝑏 is a linear
combination of the columns of 𝐴. In other words, 𝐴 is onto if and
only if the columns of 𝐴 span R𝑛.



Theorem 12

Theorem 12 in the book summarizes these two key facts.

Theorem: Let 𝑇 (𝑥) = 𝐴𝑥 be a linear map from R𝑚 to R𝑛,
where 𝐴 is an 𝑛 × 𝑚 matrix.

1. 𝑇 is one-to-one if and only if the columns of 𝐴 are linearly
independent vectors in R𝑛.

2. 𝑇 is onto if and only if the columns of 𝐴 span R𝑛.



Algebraic version

Algebraically:

1. 𝑇 (𝑥) = 𝐴𝑥 is one-to-one if and only if the rref of 𝐴 has no
free variables - in other words, if every column has a pivot.

2. 𝑇 (𝑥) = 𝐴𝑥 is onto if and only if every row of 𝐴 has a pivot.

Note that if 𝐴 is an 𝑛 × 𝑚 matrix, then:
▶ if 𝑚 > 𝑛, the map cannot be one-to-one.
▶ if 𝑛 > 𝑚, the map cannot be onto.


